![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter > Plasma physics
This book is on inertial confinement fusion, an alternative way to produce electrical power from hydrogen fuel by using powerful lasers or particle beams. Two huge laser facilities are presently under construction to show that this method works. It involves the compression of tiny amounts (micrograms) of fuel to thousand times solid density and pressures otherwise existing only in the centre of stars. Thanks to advances in laser technology, it is now possible to produce such extreme states of matter in the laboratory. Recent developments have boosted laser intensities again with new possibilities for laser particle accelerators, laser nuclear physics, and fast ignition of fusion targets. This is a reference book for those working on beam plasma physics, be it in the context of fundamental research or applications to fusion energy or novel ultra-bright laser sources. The book combines quite different areas of physics: beam target interaction, dense plasmas, hydrodynamic implosion and instabilities, radiative energy transfer as well as fusion reactions. Particular attention is given to simple and useful modeling, including dimensional analysis and similarity solutions. Both authors have worked in this field for more than 20 years. They want to address in particular those teaching this topic to students and all those interested in understanding the technical basis.
This book offers the foundation for research on nuclear medicine and low temperature plasma applications in multiple industries and daily life. This book is beneficial for those wishing to advance their knowledge of the physics of plasma medicine, plasma agriculture and industrial applications. It provides a comprehensive overview of the basic Fundamental Science of Low Temperature Plasma (FS-LTP) knowledge required for the practice of medical physics in modern medicine. This book provides a guide of nuclear medicine that is the exercise of using radionuclides in medicine for diagnosis, staging of disease, therapy and monitoring the response of a disease process. This book comprehensively covers a broad range of topic including but not limited to field of Plasma Oncology and Plasma Medicine with many applications including, agriculture, plasma processing, catalysis, and aerospace engineering.
The growing number of scientific and technological applications of plasma physics in the field of Aerospace Engineering requires that graduate students and professionals understand their principles. This introductory book is the expanded version of class notes of lectures I taught for several years to students of Aerospace Engineering and Physics. It is intended as a reading guide, addressed to students and non-specialists to tackle later with more advanced texts. To make the subject more accessible the book does not follow the usual organization of standard textbooks in this field and is divided in two parts. The first introduces the basic kinetic theory (molecular collisions, mean free path, etc.) of neutral gases in equilibrium in connection to the undergraduate physics courses. The basic properties of ionized gases and plasmas (Debye length, plasma frequencies, etc.) are addressed in relation to their equilibrium states and the collisional processes at the microscopic level. The physical description of short and long-range (Coulomb) collisions and the more relevant collisions (elementary processes) between electrons' ions and neutral atoms or molecules are discussed. The second part introduces the physical description of plasmas as a statistical system of interacting particles introducing advanced concepts of kinetic theory, (non-equilibrium distribution functions, Boltzmann collision operator, etc). The fluid transport equations for plasmas of electron ions and neutral atoms and the hydrodynamic models of interest in space science and plasma technology are derived. The plasma production in the laboratory in the context of the physics of electric breakdown is also discussed. Finally, among the myriad of aerospace applications of plasma physics, the low pressure microwave electron multipactor breakdown and plasma thrusters for space propulsion are presented in two separate chapters.
This book gives an in-depth analysis of the physical phenomena of thrust production by laser radiation, as well as laser propulsion engines, and laser-propelled vehicles. It brings together into a unified context accumulated up-to-date information on laser propulsion research, considering propulsion phenomena, laser propulsion techniques, design of vehicles with laser propulsion engines, and high-power laser systems to provide movement for space vehicles. In particular, the reader will find detailed coverage of: designs of laser propulsion engines, operating as both air-breathing and ramjet engines to launch vehicles into LEOs; Assembly of vehicles whereby laser power from a remote laser is collected and directed into a propulsion engine; and, the laser-adaptive systems that control a laser beam to propel vehicles into orbits by delivering laser power through the Earth's atmosphere. This book is essential reading for researchers and professionals involved in laser propulsion.
This book introduces the research process and principles of the controlled super-coupling nuclear fusion experiment at the Experimental Advanced Superconducting Tokamak (EAST) nuclear fusion reactor in Hefei, China. It uses straightforward language to explain how nuclear fusion can provide safe, environmentally friendly, clean, and inexhaustible energy in future. EAST is the world's first fully superconducting, non-circular cross-section tokamak nuclear fusion experimental device, independently developed by the Chinese Academy of Sciences. This book helps demonstrate China's cutting-edge scientific and technological advances to the rest of the world, helps spread the scientific spirit to people around the globe, and promotes prosperity and development. The book is intended for all non-experts who would like to learn more about nuclear energy and related technologies.
This book is based on a series of lectures for an Astrophysics of the Interstellar Medium (ISM) master's degree in Astrophysics and Cosmology at Padova University. From the cold molecular phase in which stars and planetary systems form, to the very hot coronal gas that surrounds galaxies and galaxy clusters, the ISM is everywhere. Studying its properties is vital for the exploration of virtually any field in astronomy and cosmology. These notes give the student a coherent and accurate mathematical and physical approach, with continuous references to the real ISM in galaxies. The book is divided into three parts. Part One introduces the equations of fluid dynamics for a system at rest and acoustic waves, and then explores the real ISM through the role of thermal conduction and viscosity, concluding with a discussion of shock waves and turbulence. In Part Two, the electromagnetic field is switched on and its role in modulating shock waves and contrasting gravity is studied. Part Three describes dust and its properties, followed by the main stellar sources of energy. The last two chapters respectively address the various components of the ISM and molecular clouds and star formation.
Electric glow discharges (glows) can be found almost everywhere, from atmospheric electricity to modern plasma technologies, and have long been the object of research. The main purpose of this book is to provide simple illustrations of the basic physical mechanisms and principles that determine the properties of electric glow discharges. It should enable readers to successfully participate in scientific and technical progress.
This book covers a diverse cross section of this interdisciplinary research field, with contributions grouped into four categories: laser-induced filamentation; atoms and molecules in a laser field; interaction of solid materials with a coherent light field; and ion acceleration and ionization of atoms in super intense laser fields. This book series presents up-to-date reviews of advances in this interdisciplinary research field, spanning atomic and molecular physics, as well as molecular and optical science, which have been stimulated by the recent developments in ultrafast laser technologies. Each book compiles peer-reviewed articles by researchers at the forefront of their particular subfields. All the chapters include an overview to allow graduate students and researchers unfamiliar with the subfield to grasp the importance and attractions of the topic covered, followed by reports of cutting-edge discoveries.
This book presents the basics of superconductivity and applications of superconducting magnets. It explains the phenomenon of superconductivity, describes theories of superconductivity, and discusses type II and high-temperature cuprate superconductors. The main focus of the book is the application of superconducting magnets in accelerators, fusion reactors and other advanced applications such as nuclear magnetic resonance (NMR), magnetic resonance imaging (MRI), high-gradient magnetic separation (HGMS), and superconducting magnetic energy storage (SMES). This new and significantly extended second edition covers the state of the art in the development of novel superconductors for advanced magnet applications, as well as the production of practical superconducting wires, tapes, and ultra high current cables used for high-field magnets. It includes two new chapters each devoted to MgB2 and Fe-based superconductors, and discusses the recently developed and world record-setting 45.5-Tesla magnetic field generated by a combination of conventional and high-temperature cuprate superconducting magnets. In addition, it discusses the status and outlook of all current and future nuclear fusion reactors worldwide. The chapter on accelerators includes the ongoing efforts to build high luminosity LHC (HL-LHC), the high-energy 28 TeV LHC (HE-LHC), the future circular collider (FCC) at CERN, and the just launched electro-ion collider (EIC) at Brookhaven National Laboratory. The book is based on the long-standing experience of the author in studying superconducting materials, building magnets and delivering numerous lectures to research scholars and students. The book provides comprehensive and fundamental knowledge in the field of applied superconductivity, greatly benefiting researchers and graduate students wishing to learn more about the various aspects of superconductivity and advanced magnet applications.
This book introduces the concepts of more electric aircraft and aviation electrical appliances, as well as the aviation experimental platform of vacuum switches, the interruption characteristics, frequency characteristics and post-arc breakdown characteristics of intermediate frequency vacuum switches, etc. It is the first monograph on protection electrical appliances, vacuum interrupter in aviation variable frequency power system. This book includes a lot of experimental process and chart analysis for readers to understand and provides references for practical engineering problems. This book could be used as references for engineers and technicians working on electric power systems in aircrafts.
This book provides a systematic introduction to the observation and application of kinetic Alfven waves (KAWs) in various plasma environments, with a special focus on the solar-terrestrial coupling system. Alfven waves are low-frequency and long-wavelength fluctuations that pervade laboratory, space and cosmic plasmas. KAWs are dispersive Alfven waves with a short wavelength comparable to particle kinematic scales and hence can play important roles in the energization and transport of plasma particles, the formation of fine magneto-plasma structures, and the dissipation of turbulent Alfven waves. Since the 1990s, experimental studies on KAWs in laboratory and space plasmas have significantly advanced our understanding of KAWs, making them an increasingly interesting subject. Without a doubt, the solar-terrestrial coupling system provides us with a unique natural laboratory for the comprehensive study of KAWs. This book presents extensive observations of KAWs in solar and heliospheric plasmas, as well as numerous applications of KAWs in the solar-terrestrial coupling system, including solar atmosphere heating, solarwind turbulence, solar wind-magnetosphere interactions, and magnetosphere-ionosphere coupling. In addition, for the sake of consistency, the book includes the basic theories and physical properties of KAWs, as well as their experimental demonstrations in laboratory plasmas. In closing, it discusses possible applications of KAWs to other astrophysical plasmas. Accordingly, the book covers all the major aspects of KAWs in a coherent manner that will appeal to advanced graduate students and researchers whose work involves laboratory, space and astrophysical plasmas.
This book offers an introduction to the booming field of high-power laser-matter interaction. It covers the heating of matter to super-high temperatures and pressures, novel schemes of fast particle acceleration, matter far from thermal equilibrium, stimulated radiation scattering, relativistic optics, strong field QED, as well as relevant applications, such as extreme states of matter, controlled fusion, and novel radiation sources. All models and methods considered are introduced as they arise and illustrated by relevant examples. Each chapter contains a selection of problems to test the reader's understanding, to apply the models under discussion to relevant situations and to discover their limits of validity. The carefully chosen illustrations greatly facilitate the visualization of physical processes as well as presenting detailed numerical results. A list of useful formulas and tables are provided as a guide to quantifying results from experiments and numerical simulations. Each chapter ends with a description of the state of the art and the current research frontiers.
In two volumes, this book presents a detailed, systematic treatment of electromagnetics with application to the propagation of transient electromagnetic fields (including ultrawideband signals and ultrashort pulses) in dispersive attenuative media. The development in this expanded, updated, and reorganized new edition is mathematically rigorous, progressing from classical theory to the asymptotic description of pulsed wave fields in Debye and Lorentz model dielectrics, Drude model conductors, and composite model semiconductors. It will be of use to researchers as a resource on electromagnetic radiation and wave propagation theory with applications to ground and foliage penetrating radar, medical imaging, communications, and safety issues associated with ultrawideband pulsed fields. With meaningful exercises, and an authoritative selection of topics, it can also be used as a textbook to prepare graduate students for research. Volume 2 presents a detailed asymptotic description of plane wave pulse propagation in dielectric, conducting, and semiconducting materials as described by the classical Lorentz model of dielectric resonance, the Rocard-Powles-Debye model of orientational polarization, and the Drude model of metals. The rigorous description of the signal velocity of a pulse in a dispersive material is presented in connection with the question of superluminal pulse propagation. The second edition contains new material on the effects of spatial dispersion on precursor formation, and pulse transmission into a dispersive half space and into multilayered media. Volume 1 covers spectral representations in temporally dispersive media.
This book explores several key issues in beam phase space dynamics in plasma-based wakefield accelerators. It reveals the phase space dynamics of ionization-based injection methods by identifying two key phase mixing processes. Subsequently, the book proposes a two-color laser ionization injection scheme for generating high-quality beams, and assesses it using particle-in-cell (PIC) simulations. To eliminate emittance growth when the beam propagates between plasma accelerators and traditional accelerator components, a method using longitudinally tailored plasma structures as phase space matching components is proposed. Based on the aspects above, a preliminary design study on X-ray free-electron lasers driven by plasma accelerators is presented. Lastly, an important type of numerical noise-the numerical Cherenkov instabilities in particle-in-cell codes-is systematically studied.
This significantly extended second edition addresses the important physical phenomenon of Surface Plasmon Resonance (SPR) or Surface Plasmon Polaritons (SPP) in thin metal films, a phenomenon which is exploited in the design of a large variety of physico-chemical optical sensors. In this treatment, crucial materials aspects for design and optimization of SPR sensors are investigated and described in detail. The text covers a selection of nanometer thin metal films, ranging from free-electron to the platinum-type conductors, along with their combination with a large variety of dielectric substrate materials, and associated individual layer and opto-geometric arrangements. Whereas the first edition treated solely the metal-liquid interface, the SP-resonance conditions considered here are expanded to cover the metal-gas interface in the angular and wavelength interrogation modes, localized and long-range SP's and the influence of native oxidic ad-layers in the case of non-noble metals. Furthermore, a selection of metal grating structures that allow SP excitation is presented, as are features of radiative SP's. Finally, this treatise includes as-yet hardly explored SPR features of selected metal-metal and metal-dielectric superlattices. An in-depth multilayer Fresnel evaluation provides the mathematical tool for this optical analysis, which otherwise relies solely on experimentally determined electro-optical materials parameters.
This monograph presents an intuitive theory of trial wave functions for strongly interacting fermions in fractional quantum Hall states. The correlation functions for the proposed fermion interactions follow a novel algebraic approach that harnesses the classical theory of invariants and semi-invariants of binary forms. This approach can be viewed as a fitting and far-reaching generalization of Laughlin's approach to trial wave functions. Aesthetically viewed, it illustrates an attractive symbiosis between the theory of invariants and the theory of correlations. Early research into numerical diagonalization computations for small numbers of electrons shows strong agreement with the constructed trial wave functions.The monograph offers researchers and students of condensed matter physics an accessible discussion of this interesting area of research.
This book, written by key researchers in the field, provides a comprehensive analysis and overview of the state of the art of plasma-based cancer therapy. Recent progress in atmospheric plasmas has led to non-thermal or cold atmospheric plasma (CAP) devices with ion temperatures close to room temperature. In contrast to many existing anti-cancer approaches, CAP is a selective anti-cancer modality which has demonstrated significant potential in cancer therapy.Written by a global, cross-disciplinary group of leading researchers, this book covers basic theory, generation, diagnostics, and simulation of cold atmospheric plasma, as well as their clinical application in cancer therapy, immunotherapy, and future outlook, giving a complete picture of the field. It is meant for a broad audience, from students to engineers and scientists, who are interested in the emerging world of plasma medical applications. It presents recent advances, primary challenges, and future directions of this exciting, cutting-edge field.
This work introduces heavy ion beam probe diagnostics and presents an overview of its applications. The heavy ion beam probe is a unique tool for the measurement of potential in the plasma core in order to understand the role of the electric field in plasma confinement, including the mechanism of transition from low to high confinement regimes (L-H transition). This allows measurement of the steady-state profile of the plasma potential, and its use has been extended to include the measurement of quasi-monochromatic and broadband oscillating components, the turbulent-particle flux and oscillations of the electron density and poloidal magnetic field. Special emphasis is placed on the study of Geodesic Acoustic Modes and Alfven Eigenmodes excited by energetic particles with experimental data sets. These experimental studies help to understand the link between broadband turbulent physics and quasi-coherent oscillations in devices with a rather different magnetic configuration. The book also compares spontaneous and biased transitions from low to high confinement regimes on both classes of closed magnetic traps (tokamak and stellarator) and highlights the common features in the behavior of electric potential and turbulence of magnetized plasmas. A valuable resource for physicists, postgraduates and students specializing in plasma physics and controlled fusion.
This book provides an overview of the recent experimental and theoretical results on interactions of heavy ions with gaseous, solid and plasma targets from the perspective of atomic physics. The topics discussed comprise stopping power, multiple-electron loss and capture processes, equilibrium and non-equilibrium charge-state fractions in penetration of fast ion beams through matter including relativistic domain. It also addresses mean charge-states and equilibrium target thickness in ion-beam penetrations, isotope effects in low-energy electron capture, lifetimes of heavy ion beams, semi-empirical formulae for effective cross sections. The book is intended for researchers and graduate students working in atomic, plasma and accelerator physics.
|
![]() ![]() You may like...
Operations Research and Decision Aid…
Martine Labbe, Gilbert Laporte, …
Hardcover
R6,085
Discovery Miles 60 850
Protestant Spiritual Traditions, Volume…
Frank C. Senn
Hardcover
Tripping Points on the Roads to Outwit…
Yair Sharan, Ted J. Gordon, …
Hardcover
R3,807
Discovery Miles 38 070
Applied Operations Research and…
Andre B. Dorsman, Kazim Baris Atici, …
Hardcover
R4,328
Discovery Miles 43 280
Grid Resource Management - State of the…
Jarek Nabrzyski, Jennifer M. Schopf, …
Hardcover
R3,388
Discovery Miles 33 880
|