![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > States of matter > Plasma physics
This book provides a detailed overview of the plasma fluidized bed. It is an innovative tool and generally combines plasma process with another efficient reactor, fluidized bed, providing an excellent method for particulate processes over conventional technology. The development and designs of typical types of plasma fluidized beds, mainly thermal plasma fluidized beds and non-thermal plasma fluidized beds are discussed. The influencing factors on the performance of plasma fluidized beds are analyzed in detail. The mechanism, i.e. the discharge characteristics, hydrodynamics, heat transfer and mass transfer are analyzed to offer a further insight of plasma fluidized beds. Applications of plasma fluidized beds for different areas, including metallurgy extraction, green energy process, environmental protection and advanced materials are presented. The book is a valuable reference for scientists, engineers and graduate students in chemical engineering and relative fields.
"Blurb & Contents" "The reader is treated to constantly refreshing and engaging commentary and opinion that always informs....As she depicts them, the problems of the universe are always fascinating and, most of all, they are alive and compelling." David DeVorkin, Sky & Telescope Virginia Trimble offers readers a fascinating and accessible tour of the stars. An astronomer with shared appointments in California and Maryland, the author ranges over a large portion of the universe as she discusses the search for life on other planets, how galaxies form, why stars explode and die, and the nature of the elusive dark matter in the universe. She also explains the astronomical significance of Cheeps' pyramid and leads the reader through scientific speculation about what and when the Star of Bethlehem might have been. Throughout, Trimble points to the exciting unanswered questions that still perplex the field and considers the formidable tasks to be faced by the next generation of young astronomers.
This Brief describes the influence of the different organic chelating agents on the topography, physical properties and phases of SPPS-deposited spinel ferrite splats. The author describes how by using the SPPS process, the coating is produced directly from a solution precursor and how all physical and chemical reactions such as evaporation, decomposition, crystallization and coating formation occur in a single step. The author details not only the innovative approach to liquid feeding, but also focuses on its effects on the spinel ferrite system. The results of experimentation as well as detailed explanations of the experiments are included.
Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include the electron and photon collisions with atoms, ions and molecules which are required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.
This book offers the reader an overview of the basic approaches to the theoretical description of low-temperature plasmas, covering numerical methods, mathematical models and modeling techniques. The main methods of calculating the cross sections of plasma particle interaction and the solution of the kinetic Boltzmann equation for determining the transport coefficients of the plasma are also presented. The results of calculations of thermodynamic properties, transport coefficients, the equilibrium particle-interaction cross sections and two-temperature plasmas are also discussed. Later chapters consider applications, and the results of simulation and calculation of plasma parameters in induction and arc plasma torches are presented. The complex physical processes in high-frequency plasmas and arc plasmas, the internal and external parameters of plasma torches, near-electrode processes, heat transfer, the flow of solid particles in plasmas and other phenomena are considered. The book is intended for professionals involved in the theoretical study of low-temperature plasmas and the design of plasma torches, and will be useful for advanced students in related areas.
Although based on lectures given for graduate students and postgraduates starting in plasma physics, this concise introduction to the fundamental processes and tools is as well directed at established researchers who are newcomers to spectroscopy and seek quick access to the diagnostics of plasmas ranging from low- to high-density technical systems at low temperatures, as well as from low- to high-density hot plasmas. Basic ideas and fundamental concepts are introduced as well as typical instrumentation from the X-ray to the infrared spectral regions. Examples, techniques and methods illustrate the possibilities. This book directly addresses the experimentalist who actually has to carry out the experiments and their interpretation. For that reason about half of the book is devoted to experimental problems, the instrumentation, components, detectors and calibration.
These proceedings comprise invited and contributed papers presented at the 14th International Conference on X-Ray Lasers (ICXRL 2014). This conference is part of a continuing series dedicated to recent developments and applications of x-ray lasers and other coherent x-ray sources with attention to supporting technologies and instrumentation. New results in the generation of intense, coherent x-rays and progress toward practical devices and their applications in numerous fields are reported. Areas of research in plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generation, and other x-ray generation schemes are covered. The scope of ICXRL 2014 included, but was not limited to: Laser-pumped X-ray lasers Discharge excitation and other X-ray laser pumping methods Injection/seeding of X-ray amplifiers New lasing transitions and novel X-ray laser schemes High Harmonic sources-Free-electron laser generation in the XUV and X-ray range Novel schemes for coherent XUV and X-ray generation XUV and X-ray optics and metrology-Driving laser technology Theory and modeling of X-ray gain medium and beam characteristics Applications of high brightness and ultrashort X-ray sources
More than 850 individuals partly forgotten by name, but sometimes found in historical writings, together with many well known or recently deceased persons are presented in terms of bio-data, short career highlights, and main advances made to the profession with a short biography of the main writings. If available, a portrait is also included. Hydraulicians in Europe, Volume 2 is a continuation of the first volume, both in outline and in coverage and pagination. Volumes 1 and 2 include more than 1500 biographies.
This book highlights plasma science and technology-related research and development work at institutes and universities networked through Asian African Association for Plasma Training (AAAPT) which was established in 1988. The AAAPT, with 52 member institutes in 24 countries, promotes the initiation and intensification of plasma research and development through cooperation and technology sharing. With 13 chapters on fusion-relevant, laboratory and industrial plasmas for wide range of applications and basic research and a chapter on AAAPT network, it demonstrates how, with collaborations, high-quality, industrially relevant academic and scientific research on fusion, industrial and laboratory plasmas and plasma diagnostics can be successfully pursued in small research labs. These plasma sciences and technologies include pioneering breakthroughs and applications in (i) fusion relevant research in the quest for long-term, clean energy source development using high-temperature, high- density plasmas and (ii) multibillion-dollar, low-temperature, non-equilibrium and thermal industrial plasmas used in processing, synthesis and electronics.
This thesis describes experimental work in the field of trapped-ion quantum computation. It outlines the theory of Raman interactions, examines the various sources of error in two-qubit gates, and describes in detail experimental explorations of the sources of infidelity in implementations of single- and two-qubit gates. Lastly, it presents an experimental demonstration of a mixed-species entangling gate.
The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed chapters authored by researchers at the forefront of each their own subfields of UILS. Every chapter begins with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. This seventh volume covers a broad range of topics from this interdisciplinary research field, focusing on the ionization of atoms and molecules, ultrafast responses of protons and electrons within a molecule, molecular alignment, high-order harmonics and attosecond pulse generation, and acceleration of electrons and ions in laser plasmas.
During the past century, world-wide energy consumption has risen dramatically, which leads to a quest for new energy sources. Fusion of hydrogen atoms in hot plasmas is an attractive approach to solve the energy problem, with abundant fuel, inherent safety and no long-lived radioactivity. However, one of the limits on plasma performance is due to the various classes of magneto-hydrodynamic instabilities that may occur. The physics and control of these instabilities in modern magnetic confinement fusion devices is the subject of this book. Written by foremost experts, the contributions will provide valuable reference and up-to-date research reviews for "old hands" and newcomers alike.
This book draws together three areas of work on plasma technologies: advanced efforts based on wave generated, high frequency plasmas, plasma assisted ion implantation, and electron beam generated plasma. It lays a foundation for the application of sources in industry and various research areas
This is the first book to give a comprehensive overview of recent observational and theoretical results on solar wind structures and fluctuations and magnetohydrodynamic waves and turbulence, preference being given to phenomena in the inner heliosphere. Emphasis is placed on the progress made in the past decade in the understanding of the nature and origin of especially small-scale, compressible and incompressible fluctuations. Turbulence models describing the spatial transport and spectral transfer of the fluctuations in the inner heliosphere are discussed. Intermittency of solar wind fluctuations and their statistical distributions are investigated. Studies of the heating and acceleration effects of the turbulence on the background wind are critically surveyed. Finally, open questions concerning the origin, nature and evolution of the fluctuations are listed, and perspectives for future research are outlined. The book is for graduate students and researchers in the field. Other target groups are scientists and professionals interested in space plasma physics and/or MHD turbulence.
This thesis deals with the problem of ion confinement in thermonuclear fusion devices. It is a topic of general interest, as it helps to understand via numerical simulations the ion confinement properties in complex geometries, in order to predict their behavior and maximize the performance of future fusion reactors. The main work carried out in this thesis is the improvement and exploitation of an existing simulation code called ISDEP. This code solves the so-called ion collisional transport in arbitrary plasma geometry, improving in this sense other existing codes. Additionally, it presents outstanding portability and scalability in distributed computing architectures, such as Grid or Volunteer Computing. The main physical results can be divided into two blocks. First, the study of 3D ion transport in ITER is presented. ITER is the largest fusion reactor (under construction) and most of the simulations so far assume the axis-symmetry of the device. Unfortunately, this symmetry is only an approximation because of the discrete number of magnetic coils used. ISDEP has shown, using a simple model of the 3D magnetic field, how the ion confinement is affected by this symmetry breaking. Secondly, ISDEP has been applied successfully to the study of fast ion dynamics in fusion plasmas. The fast ions, with energies much larger than the thermal energy, are a product of the device's heating system. Thus, a numerical predictive tool can be used to improve the heating efficiency. ISDEP has been combined with the FAFNER2 code to study such ions in stellarator (TJ-II, LHD) and tokamak (ITER) geometries. It has also been validated by experimental results. In particular, comparisons with the CNPA diagnostic in the TJ-II stellarator are remarkable.
The presentation in the book is based on charge balance on the dust particles, number and energy balance of the constituents and atom-ion-electron interaction in the gaseous plasma. Size distribution of dust particles, statistical mechanics, Quantum effects in electron emission from and accretion on dust particles and nonlinear interaction of complex plasmas with electric and electromagnetic fields have been discussed in the book. The book introduces the reader to basic concepts and typical applications. The book should be of use to researchers, engineers and graduate students.
This book is a comprehensive description of hybrid plasma simulation models and will provide a very useful summary and guide to the vast literature on this topic. It addresses researchers and graduate students knowledgeable about computational science and numerical analysis, and can be used in courses on astrophysical and space plasmas. It is also meant for plasma installation designers. The coupled Vlasov--Maxwell equations with collisions describing well the physical system are far too heavy for numerical simulations. Hybrid models treat some aspects kinetically and some as fluids. In the first part the author discusses hybrid codes, which include a wide spectrum of description for ions, positrons, dust grains, atoms and electrons. In the second part he treats the applications to basic plasma phenomena like particle acceleration and dissipation processes as well as to the global interaction of the solar wind with nonmagnetic planets, comets, and the local interstellar medium.
Not merely a discussion of small particles or clusters of atoms, molecules, but also the systems they constitute. The goal is to analyse the properties of such finite aggregates and their behaviour in gases and plasmas, and to investigate processes that involve such clusters, based on lectures and seminar problems for graduates. The main part of the book includes more than 200 problems, covering collisions, charge transfer, chemical reactions, condensed systems and their structures, kinetics of cluster growth, excited clusters, the transition from clusters to bulk particles, and small particles, dust, and aerosols in plasmas. Reference data for corresponding parameters of systems under consideration is given in the appendices. Of interest to physicists, astrophysicists, and chemists.
This book of proceedings collects the papers presented at the workshop on "Diagnostics for Experimental Fusion Reactors" held at Villa Monastero, Varenna (Italy) September 4-12, 1997. This workshop was the seventh organized by the International School of Plasma Physics "Piero Caldirola" on the topic of plasma diagnostics and the second devoted to the diagnostic studies for the International Thermonuclear Experimental Reactor (ITER). The proceedings of the first workshop on ITER diagnostics were published by Plenum Press in 1996 with the title "Diagnostics for Experimental Thermonuclear Fusion Reactors." While many of the ideas and studies reported in the first workshop remain valid, there has been sub stantial progress in the design and specification of many diagnostics for ITER. This moti vated a second workshop on this topic and the publication of a new book of proceedings. ITER is a joint venture between Europe, Japan, Russia and USA in the field of con trolled thermonuclear fusion research. The present aim of ITER is to design an experimental fusion reactor that can demonstrate ignition and sustained burn in a magnetically confined plasma. To achieve this goal, a wide range of plasma parameters will have to be measured reliably. It is also anticipated that diagnostics will be used much more extensively as input to control systems on ITER than on present fusion devices and this will require increased relia bility and long-term stability."
Atomic Multielectron Processes is the first comprehensive collection of the data (mostly cross sections and methods) devoted to the multielectron transitions in atoms and ions induced by single collisions with charged particles and photons. The book covers the fundamental ranges of atomic physics which helps understanding the nature of many particle transitions.
Over the last few years it has become apparent that fluid turbulence shares many common features with plasma turbulence, such as coherent structures and self-organization phenomena, passive scalar transport and anomalous diffusion. This book gathers very high level, current papers on these subjects. It is intended for scientists and researchers, lecturers and graduate students because of the review style of the papers.
The book is devoted to the physical properties of nonideal plasma, in which the effects of interparticle interactions are substantial. Such a plasma is usually compressed so strongly that it is called dense plasma. Interest in plasma studies has increased over the last 10 or 15 years, owing to the development of modern technology and sophisticated facilities whose oper ation is based on a high energy density. As a result of a recent sharp increase in the number of experimental and theoretical investigations, much interesting and reliable data on the properties of dense plasma have been obtained. The data are distributed in a rapidly growing number of original publications and reviews. This volume is a systematic treatment of the thermodynamics (ionization equilibrium, particle composition), charge transport properties (especially electric con ductivity), optical properties (peculiarities of continuous and discrete spectra), and collective modes (features and manifestations) of nonideal plasma. Theoretical models are considered along with the experimental data. The book is intended for the wide range of readers, including specialists in plasma physics and various researchers who need knowledge in this field."
James L. Burch*C. Philippe Escoubet Originally published in the journal Space Science Reviews, Volume 145, Nos 1-2, 1-2. DOI: 10. 1007/s11214-009-9532-7 (c) Springer Science+Business Media B. V. 2009 The IMAGE and CLUSTER spacecraft have revolutionized our understanding of the inner magnetosphere and in particular the plasmasphere. Before launch, the plasmasphere was not a prime objective of the CLUSTER mission. In fact, CLUSTER might not have ever observed this region because a few years before the CLUSTER launch (at the beginning of the 1990s), it was proposed to raise the perigee of the orbit to 8 Earth radii to make multipoint measu- ments in the current disruption region in the tail. Because of ground segment constraints, this proposal did not materialize. In view of the great depth and breadth of plasmaspheric research and numerous papers published on the plasmasphere since the CLUSTER launch, this choice certainly was a judicious one. The fact that the plasmasphere was one of the prime targets in the inner magnetosphere for IMAGE provided a unique opportunity to make great strides using the new and comp- mentary measurements of the two missions. IMAGE, with sensitive EUV cameras, could for the rst time make global images of the plasmasphere and show its great variability d- ing storm-time. CLUSTER, with four-spacecraft, could analyze in situ spatial and temporal structures at the plasmapause that are particularly important in such a dynamic system.
The International Conference on Strongly Coupled Coulomb Systems was held on the campus of Boston College in Newton, Massachusetts, August 3-10, 1997. Although this conference was the first under a new name, it was the continuation of a series of international meetings on strongly coupled plasmas and other Coulomb systems that started with the NATO Summer Institute on Strongly Coupled Plasmas, almost exactly twenty years prior to this conference, in July of 1977 in Orleans la Source, France. Over the intervening period the field of strongly coupled plasmas has developed vigorously. In the 1977 meeting the emphasis was on computer (Monte Carlo and molecular dynamics) simulations which provided, for the first time, insight into the rich and new physics of strongly coupled fully ionizedplasmas. While theorists scrambled to provide a theoretical underpinning for these results, there was also a dearth of real experimental input to reinforce the computer simulations. Over the past few years this situation has changed drastically and a variety of direct experiments on classical, pure, strongly correlated plasma systems (charged particle traps, dusty plasmas, electrons on the surface of liquid helium, etc. ) have become available. Even more importantly, entire new area of experimental interest in condensed matter physics have opened up through developments in nano-technology and the fabrication of low-dimensional systems, where the physical behavior, in many ways, is similar to that in classical plasmas. Strongly coupled plasma physics has always been an interdisciplinaryactivity.
Recent books have raised the public consciousness about the dangers
of global warming and climate change. This book is intended to
convey the message that there is a solution. The solution is the
rapid development of hydrogen fusion energy. This energy source is
inexhaustible and, although achieving fusion energy is difficult,
the progress made in the past two decades has been remarkable. The
physics issues are now understood well enough that serious
engineering can begin.The book starts with a summary of climate
change and energy sources, trying to give a concise, clear,
impartial picture of the facts, separate from conjecture and
sensationalism. Controlled fusion -- the difficult problems and
ingenious solutions -- is then explained using many new
concepts.The bottom line -- what has yet to be done, how long it
will take, and how much it will cost -- may surprise you. |
You may like...
Chaos Theory: Modeling, Simulation And…
Christos H. Skiadas, Ioannis Dimotikalis, …
Hardcover
R4,028
Discovery Miles 40 280
Controlling Chaos - Suppression…
Huaguang Zhang, Derong Liu, …
Hardcover
R4,204
Discovery Miles 42 040
Donald Davidson's Truth-Theoretic…
Ernest LePore, Kirk Ludwig
Hardcover
R3,034
Discovery Miles 30 340
|