![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > States of matter > Plasma physics
This book offers a review of the use of extended ablation plasmas as nonlinear media for HHG of high-order harmonic generation (HHG). The book describes the different experimental approaches, shows the advantages and limitations regarding HHG efficiency and discusses the particular processes that take place at longer interaction lengths, including propagation and quasi-phase matching effects. It describes the most recent approaches to harmonic generation in the extreme ultraviolet (XUV) range with the use of extended plasma plumes, and how these differ from more commonly-used gas-jet sources. The main focus is on studies using extended plasmas, but some new findings from HHG experiments in narrow plasma plumes are also discussed. It also describes how quasi-phase-matching in modulated plasmas, as demonstrated in recent studies, has revealed different means of tuning enhanced harmonic groups in the XUV region. After an introduction to the fundamental theoretical and experimental aspects of HHG, a review of the most important results of HHG in narrow plasmas is presented, including recent studies of small-sized plasma plumes as emitters of high-order harmonics. In Chapter 2, various findings in the application of extended plasmas for harmonic generation are analyzed. One of the most important applications of extended plasmas, the quasi-phase-matching of generated harmonics, is demonstrated in Chapter 3, including various approaches to the modification of perforated plasma plumes. Chapter 4 depicts the nonlinear optical features of extended plasmas produced on the surfaces of different non-metal materials. Chapter 5 is dedicated to the analysis of new opportunities for extended plasma induced HHG. The advantages of the application of long plasma plumes for HHG, such as resonance enhancement and double-pulse method, are discussed in Chapter 6. Finally, a summary section brings together all of these findings and discuss the perspectives of extended plasma formations for efficient HHG and nonlinear optical plasma spectroscopy. The book will be useful for students and scholars working in this highly multidisciplinary domain involving material science, nonlinear optics and laser spectroscopy. It brings the new researcher to the very frontier of the physics of the interaction between laser and extended plasma; for the expert it will serve as an essential guide and indicate directions for future research.
The purpose of this text is to introduce engineering and science students to the basic underlying physics and chemistry concepts that form the foundation of plasma science and engineering. It is an accessible primer directed primarily at those students who, like the general public, simply do not understand exactly what a plasma or gas discharge is nor do they even necessarily have the fundamental background in statistical thermodynamics, gas dynamics, fluid dynamics, or solid state physics to effectively understand many plasma and gas discharge principles. At the conclusion of this text, the reader should understand what an ion is, how they move, the equations we use to describe these basic concepts, and how they link to the aforementioned topics of plasmas and gas discharges. This book is focused on specific concepts that are important to non-equilibrium, low temperature gas discharges. These discharges fi nd wide applicability today and are of significant interest to the scientifi c and engineering communities.
This thesis describes pioneering research on the extension of plasmonics schemes to the regime of high-intensity lasers. By presenting a rich and balanced mix of experimentation, theory and simulation, it provides a comprehensive overview of the emerging field of high field plasmonics, including open issues and perspectives for future research. Combining specially designed targets and innovative materials with ultrashort, high-contrast laser pulses, the author experimentally demonstrates the effects of plasmon excitation on electron and ion emission. Lastly, the work investigates possible further developments with the help of numerical simulations, revealing the potential of plasmonics effects in the relativistic regime for advances in laser-driven sources of radiation, and for the manipulation of extreme light at the sub-micron scale.
The book, 'Laser Physics and Technology', addresses fundamentals of laser physics, representative laser systems and techniques, and some important applications of lasers. The present volume is a collection of articles based on some of the lectures delivered at the School on 'Laser Physics and Technology' organized at Raja Ramanna Centre for Advanced Technology during March, 12-30, 2012. The objective of the School was to provide an in-depth knowledge of the important aspects of laser physics and technology to doctoral students and young researchers and motivate them for further work in this area. In keeping with this objective, the fourteen chapters, written by leading Indian experts, based on the lectures delivered by them at the School, provide along with class room type coverage of the fundamentals of the field, a brief review of the current status of the field. The book will be useful for doctoral students and young scientists who are embarking on a research in this area as well as to professionals who would be interested in knowing the current state of the field particularly in Indian context.
This book proposes the air insulation prediction theory and method in the subject of electrical engineering. Prediction of discharge voltage in different cases are discussed and worked out by simulation. After decades, now bottlenecks of traditional air discharge theories can be solved with this book. Engineering applications of the theory in air gap discharge voltage prediction are introduced. This book serves as reference for graduate students, scientific research personnel and engineering staff in the related fields.
This book is a complete treatment of work done to resolve the problems of position-, current-, and shape-control of plasma in tokamak-type (toroidal) devices being studied as a potential means of commercial energy production by nuclear fusion. Modelling and control are both detailed, allowing non-expert readers to understand the control problem. Starting from the magneto-hydro-dynamic equations, all the steps needed for the derivation of plasma state-space models are enumerated with frequent recall of the basic concepts of electromagnetics. The control problem is then described, beginning with the control of current and position-vertical and radial-control and progressing to the more challenging shape control. The solutions proposed vary from simple PIDs to more sophisticated MIMO controllers. The second edition of Magnetic Control of Tokamak Plasmas contains numerous updates and a substantial amount of completely new material covering areas such as: * modelling and control of resistive wall modes-the most important non-axisimmetric mode; * the isoflux approach for shape control; * a general approach for the control of limiter plasmas; * the use of inner vessel coils for vertical stabilization; and * significantly enhanced treatment of plasma-shape control at JET, including experimental results and introducing a method implemented for operation in the presence of current saturations. Whenever possible, coverage of the various topics is rounded out with experimental results obtained on currently existing tokamaks. The book also includes a presentation of the typical actuators and sensors used for control purposes in tokamaks. Some mathematical details are given in the appendices for the interested reader. The ideas formulated in this monograph will be of great practical help to control engineers, academic researchers and graduate students working directly with problems related to the control of nuclear fusion. They will also stimulate control researchers interested more generally in the advanced applications of the discipline. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
The present research studies the fundamental physics occurring during the magnetic flux and magnetized plasma compression by plasma implosion. This subject is relevant to numerous studies in laboratory and space plasmas. Recently, it has attracted particular interest due to the advances in producing high-energy-density plasmas in fusion-oriented experiments, based on the approach of magnetized plasma compression. The studied configuration consists of a cylindrical gas-puff shell with pre-embedded axial magnetic field that pre-fills the anode-cathode gap. Subsequently, axial pulsed current is driven through the plasma generating an azimuthal magnetic field that compresses the plasma and the axial magnetic field embedded in it. A key parameter for the understanding of the physics occurring during the magnetized plasma compression is the evolution and distribution of the axial and azimuthal magnetic fields. Here, for the first time ever, both fields are measured simultaneously employing non-invasive spectroscopic methods that are based on the polarization properties of the Zeeman effect. These measurements reveal unexpected results of the current distribution and the nature of the equilibrium between the axial and azimuthal fields. These observations show that a large part of the current does not flow in the imploding plasma, rather it flows through a low-density plasma residing at large radii. The development of a force-free current configuration is suggested to explain this phenomenon. Previously unpredicted observations in higher-power imploding-magnetized-plasma experiments, including recent unexplained structures observed in the Magnetized Liner Inertial Fusion experiment, may be connected to the present discovery.
This thesis devotes three introductory chapters to outlining basic recipes for constructing the quantum Hamiltonian of an arbitrary superconducting circuit, starting from classical circuit design. Since a superconducting circuit is one of the most promising platforms for realizing a practical quantum computer, anyone who is starting out in the field will benefit greatly from this introduction. The second focus of the introduction is the ultrastrong light-matter interaction (USC), where the latest developments are described. This is followed by three main research works comprising quantum memory in USC; scaling up the 1D circuit to a 2D lattice configuration; creation of Noisy Intermediate-Scale Quantum era quantum error correction codes and polariton-mediated qubit-qubit interaction. The research work detailed in this thesis will make a major contribution to the development of quantum random access memory, a prerequisite for various quantum machine learning algorithms and applications.
This revised edition of the author's classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter - including free charged particles and antiparticles, acceleration beams, plasma and plasmous media. The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pulses of ultrarelativistic intensities. The only book devoted to the subject of relativistic nonlinear electrodynamics, this second edition will be a valuable resource for graduate students and researchers involved in any aspect of the field, including those working with intense x-ray - gamma-ray lasers, the new generation of small size laser-plasma accelerators of superhigh energies and high-brightness particle beams.
The central subject of this thesis is the theoretical description of ultrafast dynamical processes in molecular systems of chemical interest and their control by laser pulses. This work encompasses different cutting-edge methods in quantum chemistry, quantum dynamics and for the rigorous description of the interaction of light and matter at the molecular level. It provides a general quantum mechanical framework for the description of chemical processes guided by laser pulses, in particular near conical intersections, i.e. geometries where the nuclear and electronic motions couple and the molecule undergoes non-adiabatic (or non-Born-Oppenheimer) dynamics. In close collaboration with experimentalists, the author succeeds in making a decisive step to link and to apply quantum physics to chemistry by transferring state of the art techniques and concepts developed in physics to chemistry, such as "light dressed atoms and molecules" and "adiabatic Floquet theory". He applies these techniques in three prototypic model systems (aniline, pyrazine and NHD2) using high-level electronic structure calculations. Readers will enjoy the comprehensive and accessible introduction to the topic and methodology, as well as the clear structure of the thesis.
This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.
This is the first book to systematically consider the modern aspects of chaotic dynamics of magnetic field lines and charged particles in magnetically confined fusion plasmas. The analytical models describing the generic features of equilibrium magnetic fields and magnetic perturbations in modern fusion devices are presented. It describes mathematical and physical aspects of onset of chaos, generic properties of the structure of stochastic magnetic fields, transport of charged particles in tokamaks induced by magnetic perturbations, new aspects of particle turbulent transport, etc. The presentation is based on the classical and new unique mathematical tools of Hamiltonian dynamics, like the action--angle formalism, classical perturbation theory, canonical transformations of variables, symplectic mappings, the Poincare-Melnikov integrals. They are extensively used for analytical studies as well as for numerical simulations of magnetic field lines, particle dynamics, their spatial structures and statistical properties. The numerous references to articles on the latest development in the area are provided. The book is intended for graduate students and researchers who interested in the modern problems of magnetic stochasticity in magnetically confined fusion plasmas. It is also useful for physicists and mathematicians interested in new methods of Hamiltonian dynamics and their applications.
The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats subcritical shocks which dissipate flow energy by generating anomalous resistance or viscosity. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecting particles back upstream and generating high electromagnetic wave intensities. Particle acceleration and turbulence at such shocks become possible and important. Part II treats planetary bow shocks and the famous Heliospheric Termination shock as examples of two applications of the theory developed in part I.
This book addresses the peculiarities of nonlinear wave propagation in waveguides and explains how the stratification depends on the waveguide and confinement. An example of this is an optical fibre that does not allow light to pass through a density jump. The book also discusses propagation in the nonlinear regime, which is characterized by a specific waveform and amplitude, to demonstrate so-called solitonic behaviour. In this case, a wave may be strongly localized, and propagates with a weak change in shape. In the waveguide case there are additional contributions of dispersion originating from boundary or asymptotic conditions. Offering concrete guidance on solving application problems, this essentially (more than twice) expanded second edition includes various aspects of guided propagation of nonlinear waves as well as new topics like solitonic behaviour of one-mode and multi-mode excitation and propagation and plasma waveguides, propagation peculiarities of electromagnetic waves in metamaterials, new types of dispersion, dissipation, electromagnetic waveguides, planetary waves and plasma waves interaction.The key feature of the solitonic behaviour is based on Coupled KdV and Coupled NS systems. The systems are derived in this book and solved numerically with the proof of stability and convergence. The domain wall dynamics of ferromagnetic microwaveguides and Bloch waves in nano-waveguides are also included with some problems of magnetic momentum and charge transport.
This thesis combines advanced femtosecond laser micro/nanofabrication technologies and frontier bionic design principles to prepare diverse biomimetic micro/nanostructures to realize their functions. By studying the formation mechanism of the micro/nanostructures, the author identifies various artificial structural colors, three-dimensional micro/nanocage arrays, and fish-scale inspired microcone arrays in different processing environments. Multiple functions such as enhanced antireflection, hydrophobicity, and underwater superoleophobicity are achieved by precisely adjusting laser-machining parameters. This novel design and method have extensive potential applications in the context of new colorizing technologies, microfluidics, microsensors, and biomedicine.
This book covers the history of lasers with nuclear pumping (Nuclear Pumped Lasers, NPLs). This book showcases the most important results and stages of NPL development in The Russian Federal Nuclear Center (VNIIEF) as well as other Russian and international laboratories, including laboratories in the United States. The basic science and technology behind NPLs along with potential applications are covered throughout the book. As the first comprehensive discussion of NPLs, students, researchers, and application engineers interested in high energy lasers will find this book to be an extremely valuable source of information about these unique lasers.
This book revisits the long-standing puzzle of cross-scale energy transfer and dissipation in plasma turbulence and introduces new perspectives based on both magnetohydrodynamic (MHD) and Vlasov models. The classical energy cascade scenario is key in explaining the heating of corona and solar wind. By employing a high-resolution hybrid (compact finite difference & WENO) scheme, the book studies the features of compressible MHD cascade in detail, for example, in order to approximate a real plasma cascade as "Kolmogorov-like" and to understand features that go beyond the usual simplified theories based on incompressible models. When approaching kinetic scales where plasma effects must be considered, it uses an elementary analysis of the Vlasov-Maxwell equations to help identify the channels through which energy transfer must be dissipated. In addition, it shows that the pressure-strain interaction is of great significance in producing internal energy. This analysis, in contrast to many other recent studies, does not make assumptions about wave-modes, instability or other specific mechanisms responsible for the dynamics - the results are direct consequences of the Vlasov-Maxwell system of equations. This is an important step toward understanding dissipation in turbulent collisionless plasma in space and astrophysics.
This two-part book is devoted to classic fundamentals and current practices and perspectives of modern plasma astrophysics. This second part discusses the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas in the solar system, single and double stars, relativistic objects, accretion disks and their coronae. More than 25% of the text is updated from the first edition, included the additions of new figures, equations and entire sections on topics such as topological triggers for solar flares and the magnetospheric physics problem. This book is aimed at professional researchers in astrophysics, but it will also be useful to graduate students in space sciences, geophysics, applied physics and mathematics, especially those seeking a unified view of plasma physics and fluid mechanics.
This book documents the recent vivid developments in the research field of ultrashort intense light pulses for probing and controlling ultrafast dynamics. The recent fascinating results in studying and controlling ultrafast dynamics in ever more complicated systems such as (bio-)molecules and structures of meso- to macroscopic sizes on ever shorter time-scales are presented. The book is written by some of the most eminent experimental and theoretical experts in the field. It covers the new groundbreaking research directions that were opened by the availability of new light sources such as fully controlled intense laser fields with durations down to a single oscillation cycle, short-wavelength laser-driven attosecond pulses and intense X-ray pulses from the upcoming free electron lasers. These light sources allowed the investigation of dynamics in atoms, molecules, clusters, on surfaces and very recently also in nanostructures and solids in new regimes of parameters which, in turn, led to the identification of completely new dynamics and methods for controlling it. Example topics covered by this book include the study of ultrafast processes in large molecules using attosecond pulses, control of ultrafast electron dynamics in solids with shaped femtosecond laser pulses, light-driven ultrafast plasmonic processes on surfaces and in nanostructures as well as research on atomic and molecular systems under intense X-ray radiation. This book is equally helpful for people who would like to step into this field (e.g. young researchers), for whom it provides a broad introduction, as well as for already experienced researchers who may enjoy the exhaustive discussion that covers the research on essentially all currently studied objects and with all available ultrafast pulse sources.
Radiation from spectral lines can be absorbed and re- emitted many times in atomic vapours before it reaches the boundaries of the container encasing the vapour. This effect is known as radiation trapping. It plays an important role practically everywhere where atomic vapours occur, e.g. in spectroscopy, in gas lasers, in atomic line filters, in the determination of atomic lifetimes, in measurements of atomic interaction potentials, and in electric discharge lamps. This book for the first time assembles all the information necessary for a treatment of practical problems, emphasizing both physical insights and mathematical methods. After an introduction that reviews resonance radiation and collisional processes in atomic vapours, physical effects and mathematical methods for various types of problems (e.g. with or without saturation, particle diffusion, reflecting cell walls, etc.) are explained in detail. The last part of the book describes the applications of these methods to a variety of practical problems like cross-section measurements or the design of discharge lamps.
This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods.
This volume presents the state-of-the-art in selected topics across modern nuclear physics, covering fields of central importance to research and illustrating their connection to many different areas of physics. It describes recent progress in the study of superheavy and exotic nuclei, which is pushing our knowledge to ever heavier elements and neutron-richer isotopes. Extending nuclear physics to systems that are many times denser than even the core of an atomic nucleus, one enters the realm of the physics of neutron stars and possibly quark stars, a topic that is intensively investigated with many ground-based and outer-space research missions as well as numerous theoretical works. By colliding two nuclei at very high ultra-relativistic energies one can create a fireball of extremely hot matter, reminiscent of the universe very shortly after the big bang, leading to a phase of melted hadrons and free quarks and gluons, the so-called quark-gluon plasma. These studies tie up with effects of crucial importance in other fields. During the collision of heavy ions, electric fields of extreme strength are produced, potentially destabilizing the vacuum of the atomic physics system, subsequently leading to the decay of the vacuum state and the emission of positrons. In neutron stars the ultra-dense matter might support extremely high magnetic fields, far beyond anything that can be produced in the laboratory, significantly affecting the stellar properties. At very high densities general relativity predicts the stellar collapse to a black hole. However, a number of current theoretical activities, modifying Einstein's theory, point to possible alternative scenarios, where this collapse might be avoided. These and related topics are addressed in this book in a series of highly readable chapters. In addition, the book includes fundamental analyses of the practicalities involved in transiting to an electricity supply mainly based on renewable energies, investigating this scenario less from an engineering and more from a physics point of view. While the topics comprise a large scope of activities, the contributions also show an extensive overlap in the methodology and in the analytical and numerical tools involved in tackling these diverse research fields that are the forefront of modern science.
This thesis provides a comprehensive introduction to two active research directions within the field of plasmonics: (i) nonclassical, or quantum, aspects of the plasmonic response; and (ii) two-dimensional plasmonics, a recent innovation in the field stimulated by the advent of two-dimensional materials. It discusses the fundamentals of this field in detail, and explores several current research directions. Nonclassical plasmonics has been spurred on in recent years by the tremendous technological progress in nanofabrication and optical characterization; today, it is possible to investigate the plasmonic features of nanostructures with characteristic features in the few nanometer range. The book describes and analyzes the breakdown of the classical theory under these conditions and explores several alternatives and extensions. The unique electronic and dimensional features of novel two-dimensional materials, such as graphene, lie at the core of plasmonics' most rapidly developing subfield; two-dimensional plasmonics. This thesis provides a clear and comprehensive exposition of the central features for interested researchers looking for an entry point to this riveting area.
This book provides an overview of hydrogen production from renewable resources such as ethanol using plasma or plasma-catalytic technologies. Further, it presents a balanced and comprehensive treatment of the core principles, novel plasma reactors and diagnostics, as well as state-of-the-art plasma energy applications. It brings together technological advances and research on plasma generators and their application in hydrogen production, including plasma-assisted alcohol reforming technology, plasma-catalytic alcohol reforming technology, the alcohol reforming mechanism, models of alcohol reforming for hydrogen production, the energy balance of hydrogen production from ethanol, and a comparison of alcohol reforming assisted by different plasma treatment systems. As such, it offers a valuable reference guide for scientists, engineers and graduate students in the fields of energy and environment, plasma physics and chemistry. |
You may like...
Introduction to Plasma Physics
Gerard Belmont, Laurence Rezeau, …
Hardcover
R2,586
Discovery Miles 25 860
Atmospheric Pressure Plasma - from…
Anton Nikiforov, Zhiqiang Chen
Hardcover
R3,065
Discovery Miles 30 650
Plasma Remediation Technology for…
Changming Du, Jianhua Yan
Hardcover
R2,653
Discovery Miles 26 530
Topics in Magnetohydrodynamic Topology…
David MacTaggart, Andrew Hillier
Hardcover
R4,261
Discovery Miles 42 610
Nonlinear Wave and Plasma Structures in…
Evgeny Mishin, Anatoly Streltsov
Paperback
R3,347
Discovery Miles 33 470
|