![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Pre-clinical medicine: basic sciences
Written for the UK's Access to Higher Education program, yet universally accessible, Access to HE: Anatomy and Physiology provides an easy-to-understand text with diagrams and straightforward notes explaining the human body's structure and systems. The broader issues of progress in disease control and the links between stress and health are also examined in this textbook. This vital introductory source will benefit students entering the health profession.
This detailed volume presents protocols for advancing the utility of nanotechnology in cancer research toward improving our understanding of cancer biology, prevention, diagnosis, and therapy. There are continuous new discoveries in the field of nanotechnology, thus creating new imaging systems or therapies, and this book focuses on how to employ certain discoveries for studying cancer by presenting principles along with techniques to allow for the transformation of any new discoveries in the field into cancer-studying tools with the hope of bringing in the involvement of biomedical scientists who can enhance the speed of discoveries toward cancer diagnosis and therapy. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and motivating, Cancer Nanotechnology: Methods and Protocols serves as an ideal resource for biomedical scientists interested in the potential of this field as well as for physical scientists and engineers interested in employing nanotechnology in cancer diagnosis and therapy.
In just under three decades, the world has witnessed an enormous rise in obesity with a parallel growth in cardiometabolic disease risk factors characterized by insulin resistance, dyslipidemia, and hypertension, together known as the metabolic syndrome - conditions previously unheard of in children and adolescents. During this time, we have little knowledge of the global and cumulative detrimental health effects of childhood obesity. As obese children age, not only will their health be negatively affected, but infertility and pregnancy complications associated with the metabolic syndrome will affect generations to come. The work force will undoubtedly be affected because of increased sick days and decreased work productivity. Identifying children and adolescents at the earliest stages of chronic disease onset should be the goal of clinical practice, yet there is no clear guidance for defining the risk of metabolic syndrome or appropriate risk-factor thresholds in these groups. If children are identified early in the disease process, lifestyle and clinical interventions can be instituted when they are potentially more effective. Pediatric Metabolic Syndrome: Comprehensive Clinical Review and Related Health Issues approaches the pediatric metabolic syndrome by elucidating its effects on specific organ systems and by considering the problem through understanding the social, psychological and economic consequences of it. The Editors have recruited an invited group of esteemed experts in the field to provide the most timely and informative approaches on how to deal with this health crisis. Through educating our practitioners, our future researchers, our health and community organizations, our legislators and our families and children, we have the best chance at improving the health trajectory of the next generation.
This volume explores databases containing genome-based data and genome-wide analyses. This book covers databases from all eukaryotic taxa, except plants. The chapters describe database contents and classic use-cases, which assist in accessing eukaryotic genomic data and encouraging comparative genomic research. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, step-by-step, readily reproducible computational protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Eukaryotic Genomic Databases: Methods and Protocols is a valuable resource for geneticists and molecular biologists who are interested in the latest eukaryotic genomics data. The chapters 'PomBase: The Scientific Resource for Fission Yeast' and 'The Ensembl Genome Browser: Strategies for Accessing Eukaryotic Genome Data' are available open access under a CC BY 4.0 license via link.springer.com.
This book is the proceedings of the Falk Symposium No. 135 held in Prague, Czech Republic, on September 12-13, 2003, and is dedicated to the important issue of immunological aspects of diseases of the liver and gut. Without any doubt, immunological pathways are among the most important and universal factors in the pathogenesis of all diseases. Their importance is also constantly increasing, because these principles have been adopted in clinical practice for both diagnostic and therapeutic procedures. Chapters by prominent experts will stimulate new ideas and set the scene for productive discussion on this topic.
The Multiple Inert Gas Elimination Technique (MIGET) is a complex methodology involving specialized gas chromatography and sophisticated mathematics developed in the early 1970's. Essentially, nobody possesses knowledge of all its elements except for its original developers, and while some practical and theoretical aspects have been published over the years, none have included the level of detail that would be necessary for a potential user to adopt and understand the technique easily. This book is unique in providing a highly detailed, comprehensive technical description of the theory and practice underlying the MIGET to help potential users set up the method and solve problems they may encounter. But it is much more than a reference manual - it is a substantial physiological and mathematical treatise in its own right. It also has a wide applicability - there is extensive discussion of the common biological problem of quantitative inference. The authors took measured whole-lung gas exchange variables, and used mathematical procedures to infer the distribution of ventilation and blood flow from this data. In so doing, they developed novel approaches to answer the question: What are the limits to what can be concluded when inferring the inner workings from the "black box" behavior of a system? The book details the approaches developed, which can be generalized to other similar distributed functions within tissues and organs. They involve engineering approaches such as linear and quadratic programming, and uniquely use mathematical tools with biological constraints to obtain as much information as possible about a "black box" system. Lastly, the book summarizes the hundreds of research papers published by a number of groups over the decades in a way never before attempted in order to marshal the world's literature on the topic and to provide in one place the wealth of important discoveries, both physiological a nd clinical, enabled by the technique.
Human beings normally have a total of 46 chromosomes, with each chromosome present twice, apart from the X and Y chromosomes in males. Some three million people worldwide, however, have 47 chromosomes: they have a small supernumerary marker chromosome (sSMC) in addition to the 46 normal ones. This sSMC can originate from any one of the 24 human chromosomes and can have different shapes. Approximately one third of sSMC carriers show clinical symptoms, while the remaining two thirds manifest no phenotypic effects. This guide represents the first book ever published on this topic. It presents the latest research results on sSMC and current knowledge about the genotype-phenotype correlation. The focus is on genetic diagnostics as well as on prenatal and fertility-related genetic counseling. A unique feature is that research meets practice: numerous patient reports complement the clinical aspects and depict the experiences of families living with a family member with an sSMC.
The acclaimed International Review of Cytology series presents current advances and reviews in cell biology, both plant and animal. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research.
This volume presents a valuable and readily reproducible collection of established and emerging techniques on modern genetic analyses. Chapters focus on statistical or data mining analyses, genetic architecture, the burden of multiple testing, genetic variance, measuring epistasis, multifactor dimensionality reduction, and ReliefF. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Epistasis: Methods and Protocols aids scientists in continuing to study elucidate epistasis in the context of modern data availability.
New experimental observations often require fresh concepts for their interpretation, and at times even changes of paradigms. This is the situation with the recent realization that circulating endothelial progenitor cells may have an important contribution to the maintenance and formation of new endothelium in adult organisms, in a surprisingly wide variety of situations. The classical paradigm of angiogenesis, centered on the notion of "sprouting" can hardly accommodate them. It was previously realized that it needs to be "stretched out" to include alternative mechanisms of microvascular development, such as intussusception and capillary fusion. However, a major debate where to reconsider the sprouting mechanism, and to promote alternative views, did not take place yet. The number of publications in this field increased exponentially in the last years. Nevertheless, the concepts and notions so much needed to describe and to explain the new observations are still scarce, and heterogeneous. Within the larger community dedicated to the study of angiogenesis, the researchers involved in investigation of circulating precursor endothelial cells biology represent a subgroup with specific preoccupations and opinions. Many of them did not meet each other so far, and no major scientific events have been dedicated before exclusively to their interests. For the above reasons, the idea to organize a symposium addressing the new developments in angiogenesis research was received with enthusiasm by all those involved in its preparation.
Matrix metalloproteinases (MMPs) are proteolytic enzymes that are involved in many physiological and pathological processes. The field of MMP research is very important due to the implications of the distinct paralogs in both human physiology and pathology. Over-activation of these enzymes results in tissue degradation, producing a wide array of disease processes such as rheumatoid arthritis, osteoarthritis, tumor growth and metastasis, multiple sclerosis, congestive heart failure, and others. Thus MMP inhibitors are candidates for therapeutic agents to combat a number of diseases. The present book discusses the design and development of different classes of inhibitors of important classes of MMPs, such as gelatinases and collagenases. The articles focus specifically on structure-activity relationships of all classes of compounds and on their modes of action and specificity of binding with the receptors based on experimental and theoretical studies. These studies constitute a valuable asset for all those involved in drug development.
Transcription factors are the molecules that the cell uses to interpret the genome: they possess sequence-specific DNA-binding activity, and either directly or indirectly influence the transcription of genes. In aggregate, transcription factors control gene expression and genome organization, and play a pivotal role in many aspects of physiology and evolution. This book provides a reference for major aspects of transcription factor function, encompassing a general catalogue of known transcription factor classes, origins and evolution of specific transcription factor types, methods for studying transcription factor binding sites in vitro, in vivo, and in silico, and mechanisms of interaction with chromatin and RNA polymerase."
'Reprogen-ethics and the future of gender' bring together three tightly related topics, which have so far been dealt separately in bioethics: assisted reproduction, enhancing and gender. Part one in this book targets presents policies and legislature of assisted reproduction. Part two focuses on current views of the ethics of PGD and enhancing. Part three tackles the future of gender. Part four deals with artificial wombs and ectogenesis. The aim of this book is to provide a joint perspective in order to get the big picture. Contributors include John Harris, Matti Hairy, Tuija Takala, Soren Holm, David Heyd, Daniel Callahan, James Hughes, Harriet Bradley, Ekaterina Balabanova, Roy Gilbar and others. Some chapters in this book will significantly contribute to the current discussion of the topics at stake; other chapters will start a discussion on issues that have not yet been discussed. 'Reprogen-ethics and the future of gender' will certainly appeal to readers who are interested in any of the intersecting topics of assisted reproduction, genetic enhancing and gender; bioethicists, sociologists, genetic counsellors, gynaecologists, legislators, and students of the relevant disciplines.
"Metallomics and the Cell" provides in an authoritative and timely manner in 16 stimulating chapters, written by 37 internationally recognized experts from 9 nations, and supported by more than 3000 references, several tables, and 110 illustrations, mostly in color, a most up-to-date view of the "metallomes" which, as defined in the "omics" world, describe the entire set of biomolecules that interact with or are affected by each metal ion. The most relevant tools for visualizing metal ions in the cell and the most suitable bioinformatic tools for browsing genomes to identify metal-binding proteins are also presented. Thus, MILS-12 is of relevance for structural and systems biology, inorganic biological chemistry, genetics, medicine, diagnostics, as well as teaching, etc.
The acclaimed International Review of Cytology series presents
current advances and reviews in cell biology, both plant and
animal. Articles address structure and control of gene expression,
nucleocytoplasmic interactions, control of cell development and
differentiation, and cell transformation and growth. Authored by
some of the foremost scientists in the field, each volume provides
up-to-date information and directions for future research.
Contributors to this volume are
The acclaimed International Review of Cytology series presents
current advances and reviews in cell biology, both plant and
animal. Articles address structure and control of gene expression,
nucleocytoplasmic interactions, control of cell development and
differentiation, and cell transformation and growth. Authored by
some of the foremost scientists in the field, each volume provides
up-to-date information and directions for future research.
Contributors to this volume are
This volume entitled 'The Role of Chemistry in the Evolution of
Molecular Medicine' contains a collection of papers that form the
proceedings of the Symposium held at the University of Szeged
(27-29 June 2003).
Human cell culture is not a new topic, but the development of new molecular techniques and reagents which can be used to investigate cell function and the responsible intracellular mechanisms make it a continuing requirement. This third edition of Human Cell Culture Protocols expands upon the previous editions with current, detailed protocols for the isolation and culture of a range of primary cells from human tissues. With new chapters on pancreatic cells needed for basic studies on the pathogenesis of diabetes and for their application for islet transplantation, the book also delves into protocols for hepatocytes, skin cells, lung cells, parathyroid cells, gastric cells, renal cells, adipocytes, ovarian cells, bone cells, vascular smooth muscle cells, vascular endothelial cells, regulatory T cells, blood mononuclear cells, as well as new techniques being applied to human cell culture, particularly the use of biocompatible scaffolds to grow cells, the in vitro use of laser microdissection to isolate cells from culture, and automated cell culture. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Human Cell Culture Protocols, Third Edition makes it possible for a worker with basic cell culture training, whether in the fields of cell biology, gene therapy, and cell transplantation, to prepare cell cultures of the specific cell type necessary to forward their vital research.
Bioinformatics is an integrative field of computer science, genetics, genomics, proteomics, and statistics, which has undoubtedly revolutionized the study of biology and medicine in past decades. It mainly assists in modeling, predicting and interpreting large multidimensional biological data by utilizing advanced computational methods. Despite its enormous potential, bioinformatics is not widely integrated into the academic curriculum as most life science students and researchers are still not equipped with the necessary knowledge to take advantage of this powerful tool. Hence, the primary purpose of our book is to supplement this unmet need by providing an easily accessible platform for students and researchers starting their career in life sciences. This book aims to avoid sophisticated computational algorithms and programming. Instead, it mostly focuses on simple DIY analysis and interpretation of biological data with personal computers. Our belief is that once the beginners acquire these basic skillsets, they will be able to handle most of the bioinformatics tools for their research work and to better understand their experimental outcomes. Unlike other bioinformatics books which are mostly theoretical, this book provides practical examples for the readers on state-of-the-art open source tools to solve biological problems. Flow charts of experiments, graphical illustrations, and mock data are included for quick reference. Volume I is therefore an ideal companion for students and early stage professionals wishing to master this blooming field.
This volume focuses on cytological, biochemical, and molecular biological methods to identify and examine the function of each nuclear body, with an emphasis on the analysis of long non-coding RNAs. Chapters focus on exploring recent studies that reveal how certain long non protein-coding RNAs accumulate in specific nuclear bodies and regulate the function of the bodies by serving as architectural components or controlling the dynamics of associating protein components. Written in the highly successful Methods of Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Nuclear Bodies and Noncoding RNAs: Methods and Protocols serves as a guideline for further study into the sophisticated regulation of gene expression.
This detailed volume will focus on the phenomenon of RNA interference by providing comprehensive coverage of various techniques for in vivo micro/siRNA imaging including the design and synthesis of specific imaging agents and tools, the development of imaging methodologies, and their interpretation. An essential element in the development and optimization of these therapies is the ability to measure the bioavailability and functionality of the RNA/oligonucleotide molecule after administration into the body. Noninvasive imaging provides the necessary set of tools to accomplish this in authentic physiologic environments and across time. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, RNA Imaging: Methods and Protocols serves physicians, scientists, and graduate students who are either new to the field of RNA-based imaging and its associated therapeutic applications or who wish to be apprised of recent advances in the state of the art.
Synthetic mRNA is an attractive tool for mammalian cell reprogramming that can be used in basic research, as well as in clinical applications. Present mRNA in vitro synthesis is a rather simple procedure, which delivers a high yield of quality product. Various modifications may be introduced into the mRNA by changing the sequence of the DNA template, by modifying the reaction of transcription, or by post-transcriptional modification. mRNA, as a transfection agent, has several advantages over DNA, as mRNA expression is not dependent on nuclear entry and occurs directly in the cytosol. Synthetic Messenger RNA and Cell Metabolism Modulation: Methods and Protocols covers the typical main methods, such as mRNA synthesis, modifications, and delivery. Examples of cell reprogramming and analysis in the fields of immunotherapy and stem cell research are also included. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Synthetic Messenger RNA and Cell Metabolism Modulation: Methods and Protocols will be of interest to researchers, clinicians, and biotech companies interested in mRNA-mediated cell reprogramming.
This unique book explores the role of retrotransposons in human health and disease. The ability of retrotransposons to affect the structure of human genes is recognized since the late 80's. However, the advances of deep-sequencing technologies have shed new light on the extent of retrotransposon-mediated genome variations. These progresses have also led to the discovery that retrotransposon activity is not restricted to the germline - resulting in inheritable genetic variations - but can also mobilize in somatic tissues, such as embryonic stem cells, neuronal progenitor cells, or in many cancers. This book covers topics related to the effects of retrotransposon insertions, and their consequences on germline and somatic genome dynamics, but also discuss the role and impact of retrotransposons sequences in a broader context, including a number of novel topics that emerged recently (long non-coding RNA, neuronal disorders, exaptation) with unexpected connections between retrotransposons, stem cell maintenance, placentation, circadian cycles or aging. |
You may like...
Anti-Aging Drug Discovery on the Basis…
Sandeep Kumar Singh, Chih Li Lin, …
Paperback
R3,241
Discovery Miles 32 410
Encyclopedia of Cell Biology
Ralph A. Bradshaw, Philip D. Stahl, …
Hardcover
R60,861
Discovery Miles 608 610
Herbal Bioactive-Based Drug Delivery…
Not available
Inderbir Singh Bakshi, Rajni Bala, …
Paperback
R3,967
Discovery Miles 39 670
Handbook of Lipids in Human Function…
Ronald Ross Watson, Fabien DeMeester
Hardcover
R3,538
Discovery Miles 35 380
|