![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Pre-clinical medicine: basic sciences
The tiny microRNAs (miRNAs) can have huge impacts on the regulation of a variety of genes and play crucial roles in the fundamental cellular processes. Recent miRNA studies change the landscape of cancer genetics by scrutinizing the alterations of genome-wide miRNA expressions in most common cancers and their regulatory functions during the development of cancer. The connections between miRNAs and cancer are widespread enough to warrant more comprehensive investigations in the systems biology perspective. In MicroRNA and Cancer: Methods and Protocols, internationally renowned experts provide the latest miRNA knowledge, the various techniques and methodologies currently available for cancer research application. Ranging from the fundamental concepts to practical applications, this book presents: * Overview of microRNA biogenesis, computational prediction of new miRNAs in the cancer genome, and miRNA-based therapeutic approaches for cancer treatment * Detailed experimental protocols in miRNA detection with novel and high-throughput technology, miRNA library cloning, miRNA epigenetic regulation, and miRNA pathway study * Stepwise computational and bioinformatic procedures for miRNA complex networks in cancer genomes with a variety of softwares and programs * Cross-cited notes on troubleshooting and avoiding known pitfalls Authoritative and cutting-edge, MicroRNA and Cancer: Methods and Protocols serves researchers with the basic principles of experimental and computational methods for microRNA study in cancer research and provides a firm grounding for those who wish to further develop their own applications and tailor them to their own specific research needs.
Regulated turnover of extracellular matrix (ECM) is an important component of tissue homeostasis. In recent years, the enzymes that participate in, and control ECM turnover have been the focus of research that touches on development, tissue remodeling, inflammation and disease. This volume in the Biology of Extracellular Matrix series provides a review of the known classes of proteases that degrade ECM both outside and inside the cell. The specific EMC proteases that are discussed include cathepsins, bacterial collagenases, matrix metalloproteinases, meprins, serine proteases, and elastases. The volume also discusses the domains responsible for specific biochemical characteristics of the proteases and the physical interactions that occur when the protease interacts with substrate. The topics covered in this volume provide an important context for understanding the role that matrix-degrading proteases play in normal tissue remodeling and in diseases such as cancer and lung disease. The series Biology of Extracellular Matrix is published in collaboration with the American Society for Matrix Biology.
This volume details the most important methods used for studying prokaryotic non-coding RNAs and their protein accomplices. Chapters present methods in sections covering different aspects of the biology of that field: identification of ncRNAs, their differential expression, characterization of their structure, abundance, intracellular location and function, their interaction with RNA binding proteins, and plausible applications of ncRNA elements in the rapidly emerging field of synthetic biology. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Bacterial Regulatory RNA: Methods and Protocols serves as a guidebook for scientists working toward the development of new tools and procedures for the vital field of sRNA biology.
The availability of powerful genome-wide association study technology, during the last five years, has shown that most of the "new" MS susceptibility loci are immune-response genes. It is clear that there is much novelty in the field of MS immunology, which has served as an impetus to invest in new therapies. Notably, most if not all of these are immunotherapies. Even the equally exciting field of cell-based therapies and neuro-regeneration may well rely on cells or growth factors that are no less immunomodulators than restorative of myelin and neural cell function. Multiple Sclerosis Immunology looks at MS immunology as the basis for the present and-even more-the future of treatments for this complex autoimmune condition. Both editors are immunologists, as well as clinical neurologists, and appreciate the importance of a sustained dialogue between basic and clinical scientists to ensure that "translation" is real and not just virtual.
The increased attendance required concurrent sessions for the 48 oral presentations and 190 submitted posters (for more details see Website: www.ct.ornl.gov/symposium). Attendees came from Australia, Austria, Belgium, Brazil, Canada, China, Denmark, Finland, Germany, Hungary, India, Japan, Korea, Mexico, The Netherlands, Russia, South Korea, Spain, Sweden, Turkey, and Ven ezuela, as well as from the United States. This international perspective was continued in a Special Topic Ses sion sponsored by the International Energy Agency (lEA) Bioenergy Pro gram on Biofuels and chaired by Jack Saddler and David Gregg from the University of British Columbia. Several of the 10 member countries in this network are approaching Demonstrations of the Biomass-to-Ethanol pro cess and have a range of more fundamental projects that look at various aspects of pretreatment, enzymatic hydrolysis, fermentation, and lignin utilization. Presenters from several of the participating countries described their country's biomass-to-ethanol projects, and differential factors such as the type of biomass available, the maturity of the wood or agricultural processing industry, and the willingness of government to bear the risk/ cost of development and demonstration."
From humble beginnings over 25 years ago as a lipid kinase activity associated with certain oncoproteins, PI3K (phosphoinositide 3-kinase) has been catapulted to the forefront of drug development in cancer, immunity and thrombosis, with the first clinical trials of PI3K pathway inhibitors now in progress. Here we give a brief overview of some key discoveries in the PI3K area and their impact, and include thoughts on the current state of the field, and where it could go from here
This book will provide latest insights in the functional potentials of ribonucleic acids in medine and the use of Spiegelmer and Spiegelzyme systems. It will also deal with a new type of delivery systems for cellular targeting.
This unique and authoritative book presents an up-to-date overview of the many aspects of energy balance and its relationships to disease processes resulting from excess energy consumption and storage. It provides a comprehensive treatment of important research and clinical aspects of energy metabolism and obesity. It will be a valuable resource for endocrinologists, diabetes specialists, internists and family practitioners.
It has become clear that tumors result from excessive cell proliferation and a corresponding reduction in cell death caused by the successive accumulation of mutations in key regulatory target genes over time. During the 1980s, a number of oncogenes were characterized, whereas from the 1990s to the present, the emp- sis has shifted to tumor suppressor genes (TSGs). It has become clear that oncogenes and TSGs function in the same pathways, providing positive and negative growth regulatory activities. The signaling pathways controlled by these genes involve virtually every process in cell biology, including nuclear events, cell cycle, cell death, cytoskeletal, cell membrane, angiogenesis, and cell adhesion effects. Mu- tions in tumor suppressor genes have been identified in familial cancer syndromes, and the same genes in many cases have been found to be mutationally inactivated in sporadically occurring cancers. In their normal state, TSGs control cancer development and progression, as well as contribute to the sensitivity of cancers to a variety of therapeutics. Understanding the classes of TSGs, the biochemical pa- ways they function in, and how they are regulated provides an essential lesson in cancer biology. We cannot hope to advance our current knowledge and to develop new and more effective therapies without understanding the relevant pathways and how they influence the present approaches to therapy. Moreover, it is important to be able to access not only the powerful tools now available to discover these genes, but also their links to cell biology and growth control.
Despite remarkable progress in genome science, we are still far from a clear understanding of how genomic DNA is packaged without entanglement into a nucleus, how genes are wrapped up in chromatin, how chromatin structure is faithfully inherited from mother to daughter cells, and how the differential expression of genes is enabled in a given cell type. Exploring and answering these questions constitutes one of the next frontiers in the 21st century. We are just beginning to appreciate how Multifarious DNA structures provide additional structural and functional dimensions to chromatin organization and gene expression. DNA Conformation and Transcription is the first book that compiles the fruits of the studies that have been performed to date to solve the riddle 'written' in DNA conformation ("conformation code"). This book provides a comprehensive overview of the field by covering history of the field, up-to-date topics, clarifications of present day research, and future perspective of what is still to be discovered. Thus, it serves as an invaluable source of information on the "conformation code".
The processes of aging and death remain one of the most fascinating, and mysterious, areas of biological research. Huge anomalies between species raise questions the answers to which could have fundamental implications for the field of medical science. As scientists unlock the secrets of the exceptionally long-lived little brown bat (up to 34 years), or the common budgerigar, for example, which despite having a metabolic rate 1.5 times that of a laboratory mouse, can live for up to 20 years, it has become more important than ever to be able to make a comparative analysis of the various species used in research. Dealing with every one of the mammalian species that are employed in laboratory research, this is the first book on the subject of aging that provides detailed comparative data for age-related changes in its subjects. It does so at the level of the whole animal, its organs, organelles and molecules. The comparative data, supplied in 15 chapters by leading experts, provides information on fields as disparate as telomere function and loss, the importance of the Sirtuins and Tor, the influence of hormones on lifespans, the relationship between body size and lifespan, the effects of restricted calorific intake, age-related changes in cell replication, and DNA damage and repair. Chapters are devoted to cardiac aging, comparative skeletal muscle aging, the aging of the nervous and immune systems, the comparative biology of lyosomal function and how it is affected by age, and many other key areas of research. This much-needed text will provide scientists working in a wide spectrum of fields with key data to aid them in their studies.
This volume represents the first collection of articles contributed by research leaders working on the Myb family of transcriptional regulatory proteins. In more than twenty chapters the authors discuss the range of biological processes and diverse cell types in which Myb proteins operate. Although concentrating on the three vertebrate Myb family members, homologues from lower species are also discussed because of the light they are able to shed on the evolution and function of these proteins. Individual chapters describe the involvement of Myb proteins, in particular c-Myb, in normal and diseased development and function of many tissues including haemopoietic cells, blood vessels, the gastrointestinal tract and the brain. Several chapters explore the mechanistic details of the action of Myb proteins, especially structural features, their interaction with DNA and other regulatory proteins, and the variety of genes that are regulatory targets for this group of transcription factors. This work will be of interest to those working directly in the field and also to the wider research community investigating the transcriptional regulation of development, differentiation and growth. The therapeutic potential of manipulating Myb function is also discussed making the book appealing to clinician scientists in several fields including haematology, oncology and cardiology.
Spanning biological, mathematical, computational, and engineering sciences, computational biofluiddynamics addresses a diverse family of problems involving fluid flow inside and around living organisms, organs, tissue, biological cells, and other biological materials. Computational Hydrodynamics of Capsules and Biological Cells provides a comprehensive, rigorous, and current introduction to the fundamental concepts, mathematical formulation, alternative approaches, and predictions of this evolving field. In the first several chapters on boundary-element, boundary-integral, and immersed-boundary methods, the book covers the flow-induced deformation of idealized two-dimensional red blood cells in Stokes flow, capsules with spherical unstressed shapes based on direct and variational formulations, and cellular flow in domains with complex geometry. It also presents simulations of microscopic hemodynamics and hemorheology as well as results on the deformation of capsules and cells in dilute and dense suspensions. The book then describes a discrete membrane model where a surface network of viscoelastic links emulates the spectrin network of the cytoskeleton, before presenting a novel two-dimensional model of red and white blood cell motion. The final chapter discusses the numerical simulation of platelet motion near a wall representing injured tissue. This volume provides a roadmap to the current state of the art in computational cellular mechanics and biofluiddynamics. It also indicates areas for further work on mathematical formulation and numerical implementation and identifies physiological problems that need to be addressed in future research. MATLAB (R) code and other data are available at http://dehesa.freeshell.org/CC2
Genetic susceptibility refers to how variations in a person 's genes increase or decrease his or her susceptibility to environmental factors, such as chemicals, radiation and lifestyle (diet and smoking). This volume will explore the latest findings in the area of genetic susceptibility to gastrointestinal cancers, focusing on molecular epidemiology, DNA repair, and gene-environment interactions to identify factors that affect the incidence of GI cancers. Topics will include germline susceptibility, including Mendelian patterns of inheritance and gene-environment interactions that lead to cancer etiology.
The world's population is growing at an unsustainable rate. From a baseline ?gure of one billion in 1800, global population is predicted to exceed nine billion by 2050 and 87. 8% of this growth will be localized in less developed countries. Such uneven population growth will yield a harvest of poverty, malnutrition, disease and en- ronmental degradation that will affect us all. Amongst the complex mixture of political, social, cultural and technological changes needed to address this issue, the development of improved methods of fertility regulation will be critical. The inadequacy of current contraceptive technologies is indicated by recent data s- gesting that the contraceptive needs of over 120 million couples go unmet every year. As a direct consequence of this de?cit 38% of pregnancies are unplanned and more than 50% end in an abortion, generating a total of 46 million abortions per annum particularly among teenagers. If safe, effective contraceptives were ava- able to every couple experiencing an unmet family planning need, 1. 5 million lives would be saved each year (UNFPA 2003). Progress in contraceptive technology should not only generate more effective methods of regulating fertility, but should also provide a range of methods to meet the changing needs of the world's population. Contraceptive practice was revo- tionized in 1960 in the US and 1961 in Europe by the introduction of the oral contraceptive pill by Gregory Pincus, MC Chang and colleagues, based on fun- mental hormone research conducted in Germany.
Pharmacogenomics supports personalized medicine by translating genome-based knowledge into clinical practice, offering enhanced benefit for patients and health-care systems at large. Current routine practice for diagnosing and treating patients is conducted by correlating parameters such as age, gender and weight with risks and expected treatment outcomes. In the new era of personalized medicine the healthcare provider is equipped with improved ability to prevent, diagnose, treat and predict outcomes on the basis of complex information sources, including genetic and genomic data. Targeted therapy and reliable prediction of expected outcomes offer patients access to better healthcare management, by way of identifying the therapies effective for the relevant patient group, avoiding prescription of unnecessary treatment and reducing the likelihood of developing adverse drug reactions.
This book reports the text of the lectures of the 6th International Conference on Sodium Calcium Exchange held in Lacco Ameno in the Island of Ischia in the Gulf of Naples, Italy, from October 1 to October 5, 2011. The present book uncovers the most striking new findings on NCX that emerged since the previous Conference on Sodium Calcium Exchange, such as the structural dissection of the molecular determinants of Ca2+ sensitivity of the exchanger, the epigenetic regulation of ncx1 gene, the molecular identification of the mitochondrial Sodium Calcium Exchanger, and the discovery of NCX in unexpected anatomical locations such as the female reproductive tract. The book is organized into 11 parts covering NCX structural aspects, genetic and epigenetic regulation, regulatory mechanisms, subcellular localization in mitochondria, involvement in neurodegenerative diseases and in immune regulation, and the role of the cardiovascular and endocrine systems, as well as diabetes in physiology and pathophysiology. Selected chapters of the book are also devoted to the interaction of NCKX and other ion channels and transporters with NCX, like ASICs, TRPM, and NHE.
Apoptosis is a form of cell death that occurs in a controlled manner and is generally noninflammatory in nature. Apoptosis, or programmed cell death, implies a cell death that is part of a normal physiological process of pruning of unneeded cells. However, many disease conditions utilize apoptosis for pathological ends, resulting in inappropriate cell death and tissue destruction. This book starts with an introduction that reviews the general characteristics of apoptosis, its regulation and its role in physiology and disease. Next, the book focuses on three areas as they relate to inflammatory cells and diseases. The first area consists of chapters on signals for apoptosis important to inflammatory cells, namely growth factors and arachidonic acid metabolism. The next area that the book focuses on are effects at the cellular level, on cell survival versus cell death and signals critical for cell function in both normal and disease states. These topics are covered in chapters on lymphocytes, granulocytes, chondrocytes and keratinocytes. The last area that the book focuses on are events at the level of tissue and disease, looking at the evidence for altered apoptosis and/or apoptotic processes in immune and inflammatory diseases. These topics are covered in chapters on rheumatoid arthritis, osteoarthritis, lupus, psoriasis and renal disease. Together, these chapters will provide the reader with the latest insight in the role of apoptosis in inflammatory cells and diseases. This book starts with an introduction that reviews the general characteristics of apoptosis, its regulation and its role in physiology and disease. Next, the book focuses on three areas as they relate to inflammatory cells and diseases. The first area consists of chapters on signals for apoptosis important to inflammatory cells, namely growth factors and arachidonic acid metabolism. The next area that the book focuses on are effects at the cellular level, on cell survival versus cell death and signals critical for cell function in both normal and disease states. These topics are covered in chapters on lymphocytes, granulocytes, chondrocytes and keratinocytes. The last area that the book focuses on are events at the level of tissue and disease, looking at the evidence for altered apoptosis and/or apoptotic processes in immune and inflammatory diseases. These topics are covered in chapters on rheumatoid arthritis, osteoarthritis, lupus, psoriasis and renal disease. Together, these chapters will provide the reader with the latest insight in the role of apoptosis in inflammatory cells and diseases.
Anatomy and Physiology is a complex subject spanning many health science disciplines. Principles of Anatomy and Physiology has always been recognized for its pioneering homeostatic approach to learning the subject. This International Adaptation of the 16th edition combines exceptional content and outstanding visuals for a rich and comprehensive classroom experience and continues to set the standard for the discipline. It has been paired with a comprehensive Study Guide, offering a thoughtfully designed course in Anatomy and Physiology. Highly regarded authors, Jerry Tortora and Bryan Derrickson motivate and support learners at every level, from novice to expert, and equip them with the skills they need to succeed in this class and beyond. What’s new?:
In 1898, an Austrian microbiologist Heinrich Winterberg made a curious observation: the number of microbial cells in his samples did not match the number of colonies formed on nutrient media (Winterberg 1898). About a decade later, J. Amann qu- tified this mismatch, which turned out to be surprisingly large, with non-growing cells outnumbering the cultivable ones almost 150 times (Amann 1911). These papers signify some of the earliest steps towards the discovery of an important phenomenon known today as the Great Plate Count Anomaly (Staley and Konopka 1985). Note how early in the history of microbiology these steps were taken. Detecting the Anomaly almost certainly required the Plate. If so, then the period from 1881 to 1887, the years when Robert Koch and Petri introduced their key inventions (Koch 1881; Petri 1887), sets the earliest boundary for the discovery, which is remarkably close to the 1898 observations by H. Winterberg. Celebrating its 111th anniversary, the Great Plate Count Anomaly today is arguably the oldest unresolved microbiological phenomenon. In the years to follow, the Anomaly was repeatedly confirmed by all microb- logists who cared to compare the cell count in the inoculum to the colony count in the Petri dish (cf., Cholodny 1929; Butkevich 1932; Butkevich and Butkevich 1936). By mid-century, the remarkable difference between the two counts became a universally recognized phenomenon, acknowledged by several classics of the time (Waksman and Hotchkiss 1937; ZoBell 1946; Jannasch and Jones 1959). |
You may like...
Immunogenetics: A Molecular and Clinical…
Muneeb U Rehman, Azher Arafah, …
Paperback
R3,498
Discovery Miles 34 980
Risking Life For Death - Lessons For The…
Ryan Blumenthal
Paperback
(1)
Fibrous Proteins: Amyloids, Prions and…
John M. Squire, David A. D. Parry, …
Hardcover
R3,608
Discovery Miles 36 080
Headache and Migraine in Practice
Mansoureh Togha, Elham Jafari, …
Paperback
R3,938
Discovery Miles 39 380
Fundamentals of Human Embryology…
John Allan, Beverley Kramer
Paperback
|