![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Pre-clinical medicine: basic sciences
Hypoxia remains a constant threat throughout life. It is for this reason that the International Hypoxia Society strives to maintain a near quarter century tradition of presenting a stimulating blend of clinical and basic science discussions. International experts from many fields have focused on the state-of-the-art discoveries in normal and pathophysiological responses to hypoxia. Topics in this volume include gene-environment interactions, a theme developed in both a clinical context regarding exercise and hypoxia, as well as in native populations living in high altitudes. Furthermore, experts in the field have combined topics such as skeletal muscle angiogenesis and hypoxia, high altitude pulmonary edema, new insights into the biology of the erythropoietin receptor, and the latest advances in cardiorespiratory control in hypoxia. This volume explores the fields of anatomy, cardiology, biological transport, and biomedical engineering among many others.
Dr. Elisabeth Bock (Photo Keenpress) This book contains review articles that produce a snapshot of recent developments in the field of the neural cell adhesion molecule NCAM. The chapters are grouped into sections reflecting various aspects of NCAM structure and function. The themes cover the structural basis of cell adhesion mediated by NCAM and NCAM interaction partners, NCAM-mediated signaling determinants of NCAM function under physiological conditions and in disease, and the therapeutic potential of NCAM mimetics. Section 1, "Structure and Ligands of NCAM," introduces the reader to the str- tural basis of NCAM-mediated cell adhesion, discussing the current knowledge of extracellular and intracellular NCAM ligands and the structural basis of NCAM int- actions with the fibroblast growth factor (FGF) receptor. Section 2, "NCAM and Polysialic Acid," focuses on NCAM polysialylation, discussing the structural and functional aspects of the most important posttranslational modifications of NCAM by the addition of a long linear homopolymer of sialic acid to the fifth Ig-like NCAM module. Section 3, "NCAM-mediated Signal Transduction," is devoted to signal v BookID 187530_ChapID FM1_Proof# 1 - 01/03/2011 BookID 187530_ChapID FM1_Proof# 1 - 01/03/2011 vi Preface transduction mechanisms associated with NCAM-mediated adhesion, with a focus on signaling pathways involved in NCAM-mediated neurite outgrowth, the role of growth-associated proteins, signaling through lipid microdomains, and signaling crosstalk with the epidermal growth factor (EGF) receptor. Section 4, "NCAM Metabolism," focuses on current knowledge about NCAM biosynthesis and the g- eration and role of soluble NCAM.
The numerous vital applications of complementary DNA (cDNA) technology have changed dramatically as the technology has advanced over recent years. In cDNA Libraries: Methods and Protocols, expert researchers provide current techniques that reflect the latest advances in the construction and application of cDNA libraries. The first half of the volume covers improved approaches to some of the most basic elements of creating cDNA libraries, while the second half casts a much wider net and includes visionary applications of cDNA technology which were either unforeseen or technically impractical until recently. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, cDNA Libraries: Methods and Protocols serves as an ideal guide to all scientists seeking to advance this important technology and provide answers to the enduring fundamental questions of biology.
Natural Killer (NK) cells are large granular lymphocytes of the innate immune system. They are widespread throughout the body, being present in both lymphoid organs and non-lymphoid peripheral tissues. NK cells are involved in direct innate immune reactions against viruses, bacteria, parasites and other triggers of pathology, such as malignant transformation, all of which cause stress in affected cells. Importantly, NK cells also link the innate and adaptive immune responses, contributing to the initiation of adaptive immune responses and executing adaptive responses using the CD16 FcgRIIIA immunoglobulin Fc receptor. Such responses are mediated through two major effector functions, the direct cytolysis of target cells and the production of cytokines and chemokines. The authors focus here on the nature of recognition events by NK cells and address how these events are integrated to trigger these distinct and graded effector functions.
International Review of Cytology presents current advances and
comprehensive reviews in cell biology--both plant and animal.
Articles address structure and control of gene expression,
nucleocytoplasmic interactions, control of cell development and
differentiation, and cell transformation and growth. Authored by
some of the foremost scientists in the field, each volume provides
up-to-date information and directions for future research.
Genomic imprinting refers to a recently discovered phenomenon in which the expression pattern of an allele depends on whether that allele was inherited from the mother or the father. This difference in expression strategy correlates with differences in the epigenetic state of the two alleles. These epigenetic differences include DNA methylation at CpG dinucleotides, as well as modifications on the histones associated with the locus. In the simplest possible cases, the promoter region of the imprinted gene is methylated during oogenesis, but not spermatogenesis (or vice versa). This methylation (and its accompanying histone modifications) results in inactivation of the modified allele. Of course, most imprinted genes do not fall into this simplest case. The goal of this book is neither to provide a basic introduction to imprinting, nor to provide a comprehensive survey of the current state of the field (which would necessarily span multiple books). Rather, the book covers on some of the more recent advances, with the goal of drawing attention to some of the emerging subtleties and complexities associated with imprinted genes.
This book provides a conceptual and computational framework to study how the nervous system exploits the anatomical properties of limbs to produce mechanical function. The study of the neural control of limbs has historically emphasized the use of optimization to find solutions to the muscle redundancy problem. That is, how does the nervous system select a specific muscle coordination pattern when the many muscles of a limb allow for multiple solutions? I revisit this problem from the emerging perspective of neuromechanics that emphasizes finding and implementing families of feasible solutions, instead of a single and unique optimal solution. Those families of feasible solutions emerge naturally from the interactions among the feasible neural commands, anatomy of the limb, and constraints of the task. Such alternative perspective to the neural control of limb function is not only biologically plausible, but sheds light on the most central tenets and debates in the fields of neural control, robotics, rehabilitation, and brain-body co-evolutionary adaptations. This perspective developed from courses I taught to engineers and life scientists at Cornell University and the University of Southern California, and is made possible by combining fundamental concepts from mechanics, anatomy, mathematics, robotics and neuroscience with advances in the field of computational geometry. Fundamentals of Neuromechanics is intended for neuroscientists, roboticists, engineers, physicians, evolutionary biologists, athletes, and physical and occupational therapists seeking to advance their understanding of neuromechanics. Therefore, the tone is decidedly pedagogical, engaging, integrative, and practical to make it accessible to people coming from a broad spectrum of disciplines. I attempt to tread the line between making the mathematical exposition accessible to life scientists, and convey the wonder and complexity of neuroscience to engineers and computational scientists. While no one approach can hope to definitively resolve the important questions in these related fields, I hope to provide you with the fundamental background and tools to allow you to contribute to the emerging field of neuromechanics.
This new edited volume in the Springer Subcellular Biochemistry Series presents a comprehensive, state-of-the-art overview of the proteomics of peroxisomes derived from mammalian, Drosophila, fungal, and plant origin, and contains contributions from leading experts in the field. The development of sensitive proteomics and mass spectrometry technologies, combined with bioinformatics approaches now allow the identification of low-abundance and transient peroxisomal proteins and permits to identify the complete proteome of peroxisomes, with the consequent increase of our knowledge of the metabolic and regulatory networks of these important cellular organelles. The book lines-up with these developments and is organized in four sections including: (i) mass spectrometry-based organelle proteomics; (ii) prediction of peroxisomal proteomes; (iii) analysis of peroxisome proteome interaction networks; and (iv) peroxisomes in relation to other subcellular compartments. The editor Luis A. del Rio is Professor ad honorem of the Spanish National Research Council (CSIC) in the Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell & Molecular Biology of Plants, at the Estacion Experimental del Zaidin, Granada, Spain. Del Rio's research group focuses on the metabolism of reactive oxygen species (ROS), reactive nitrogen species (RNS) and antioxidants in plant peroxisomes, and the ROS- and RNS-dependent role of peroxisomes in plant cell signalling. The editor Michael Schrader is Professor of Cell Biology & Cytopathology in the Department of Biosciences at the University of Exeter, UK. Using mammalian peroxisomes as model organelles, Prof. Schrader and his team aim to unravel the molecular machinery and signalling pathways that mediate and regulate the formation, dynamics and abundance of these medically relevant cellular compartments.
Precis This book is a treatise about the origin of cancers. I would like to convince readers that the basic tenets of the theory of a stem-cell origin of cancers also constitute a unified theory of cancer. Stem-cell origin of normal (and cancer) cells: Vitruvian version Every truth passes through three stages before it is recognized. In the first it is ridiculed, in the second, it is opposed, in the third, it is regarded as self-evident. - Arthur Schopenhauer v vi Preface Every person has a unique story to tell. My story is about cancer. Cancer touches the lives of countless people. Often enough, it leaves indelible tracks. Many lives have been lost; others are forever changed. For those who confront this deadly scourge, there is a sense of urgency, if not of desperation. For those who face im- nent death, life becomes even more precious and carries a special meaning. As an oncologist, I am touched daily by cancer. I feel its inception, evolution, and aft- math. It seems as though we are fighting an incessant war against cancer at the front line in the trenches. This is my story about cancer. Some people are terrific storytellers. Others have incredible tales to tell.
The present monograph is devoted to the chemistry of nitroazoles, one of the most interesting series of heteroaromatic compounds. The azoles hold a special position in the chemistry of heterocycles. Their unique properties and specific biological activity attract much attention of research chemists all over the world. During the last years the interest in the chemistry of nitroazoles has increasing. The nitro derivatives of azoles have found a wide application in various fields of industrial chemistry, agriculture, and medicine. Medical products developed by nitroazoles incluce a- mycin, metronidazole, misonidazole, tinidazole, nitazole, etc. , ionic liquids, hi- energy materials, synthons for nanocompounds, universal bases in peptide nucleic acids, plant growth regulators, and intermediates for organic synthesis. The investigations in the field of energetic compounds have received enormous interest in recent years. Energetic materials on the base nitroazoles - explosives, propellants, and pyrotechnics - are widely used for both civilian and military applications. Nitroazoles, especially polynitroazoles, possess higher heat of for- tion, density, and oxygen balance than their carbocyclic analogs. A number of ongoing research programs worldwide are aimed for the development of new explosives and propellants with higher performance characteristics or enhanced insensitivity to thermal or shock insults and pyrotechnics with reduced smoke. The preparation of nitroazoles demonstrates its great synthetic potential. At the same time, feasibility and availability of the starting molecules make this strategy a p- erful method for high-energy material construction.
International Review of Cytology presents current advances and
comprehensive reviews in cell biology--both plant and animal.
Articles address structure and control of gene expression,
nucleocytoplasmic interactions, control of cell development and
differentiation, and cell transformation and growth. Authored by
some of the foremost scientists in the field, each volume provides
up-to-date information and directions for future research.
Laser microdissection techniques have revolutionized the ability of researchers in general, and pathologists in particular, to carry out molecular analysis on specific types of normal and diseased cells and to fully utilize the power of current molecular technologies including PCR, microarrays, and proteomics. In second edition of Laser Capture Microdissection: Methods and Protocols, experts in the field provide the reader with practical advice on how to carry out tissue-based laser microdissection successfully in their own laboratory using the different laser microdissection systems that are available and to apply a wide range of molecular technologies. The individual chapters encompass detailed descriptions of the individual laser based micro-dissection systems. The downstream applications of the laser microdissected tissue described in the book include PCR in its many different forms as well as gene expression analysis including application to microarrays and proteomics. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Laser Capture Microdissection: Methods and Protocols, Second Edition is an ideal resource for researchers striving to move forward our understanding of normal physiology and pathology.
This volume provides a timely and thorough review of the current state of understanding of a fascinating type of cell that is capable of forming many or all cells in the body. In humans and other mammals embryonic stem cells, the immediate offspring of the fertilized egg, are capable of forming any type of cell in the body. Moreover stem cells are present in many different tissues in adults that are capable of dividing and differentiating into the specific cell types that comprise the organ in which they reside.
This book will be a valuable reference for developmental
biologists and for scientists and clinicians who study and treat a
variety of diseases.
International Review of Cytology presents current advances and
comprehensive reviews in cell biology both plant and animal.
Articles address structure and control of gene expression,
nucleocytoplasmic interactions, control of cell development and
differentiation, and cell transformation and growth. Authored by
some of the foremost scientists in the field, each volume provides
up-to-date information and directions for future research.
The endothelins are a remarkable family of signaling peptides: molecular biology predicted the existence of their receptors and synthetic enzymes prior to both the identification of the encoded proteins and the synthesis of antagonists and inhibitors for use as pharmacological tools. Although considerable advances have been made, culminating in the design of endothelin antagonists with the- peutic potential in cardiovascular disease, much remains to be discovered. Tantalizingly, new research frontiers are emerging. To support further progress, Peptide Research Protocols: Endothelin encompasses experimental protocols that interrogate all facets of an endogenous mammalian peptide s- tem, from peptide and receptor expression through synthetic pathway to peptide function and potential role in human disease. Chapters describe the use of molecular techniques to quantify the expression of mRNA for both endothelin receptors and the endothelin-converting enzymes. Peptides, precursors, receptors, and synthetic enzymes may be localized and quantified in plasma, culture supernatants, tissue homogenates, and tissue s- tions using antibodies, while additional information on receptor characterization may be obtained using radioligand binding techniques. Several protocols cover in vitro assays that determine the function of the endothelin peptides in isolated preparations, that characterize new endothelin receptor ligands, or provide inf- mation on the tissue-specific processing of endothelin precursor peptides.
Met lewensgetroue hoedefinisie-illustrasies bied hierdie publikasie ’n uitsonderlike blik op al die belangrikste liggaamsdele en -stelsels, van kroontjie tot kleintoontjie. Akkurate terminologie in Afrikaans en Engels, asook definisies en verhelderende teks stel lesers verder in staat om grondige kennis van die spesiale eienskappe en werking van die verskillende liggaamstelsels op te doen.
The dynamics of body metabolism are changed in the disease process and interact with physical activity. The alteration of metabolism and its consequences raise the need for simple and reliable methods for assessment of body composition. The chapters aim to investigate various interacting components converging on metabolic changes in lung and muscle tissues taking into consideration the drug effects. The effects of exercise and nutritional status are dealt with at a great extent.
"Applied Computational Genomics" focuses on an in-depth review of statistical development and application in the area of human genomics including candidate gene mapping, linkage analysis, population-based, genome-wide association, exon sequencing and whole genome sequencing analysis. The authors are extremely experienced in the area of statistical genomics and will give a detailed introduction of the evolution in the field and critical evaluations of the advantages and disadvantages of the statistical models proposed. They will also share their views on a future shift toward translational biology. The book will be of value to human geneticists, medical doctors, health educators, policy makers, and graduate students majoring in biology, biostatistics, and bioinformatics. Dr. Yin Yao Shugart is investigator in the Intramural Research Program at the National Institute of Mental Health, Bethesda, Maryland USA. "
This volume contains 29 engrossing chapters contributed by worldwide, leading research groups in the field of chemical biology. Topics include pre-biology; the establishment of the genetic code; isomerization of RNA; damage of nucleobases in RNA; the dynamic structure of nucleic acids and their analogs in DNA replication, extra- and intra-cellular transport; molecular crowding by the use of ionic liquids; new technologies enabling the modification of gene expression via editing of therapeutic genes; the use of riboswitches; the modification of mRNA cap regions; new approaches to detect appropriately modified RNAs with EPR spectroscopy and the use of parallel and high-throughput techniques for the analysis of the structure and new functions of nucleic acids. This volume discusses how chemistry can add new frontiers to the field of nucleic acids in molecular medicine, biotechnology and nanotechnology and is not only an invaluable source of information to chemists, biochemists and life scientists but will also stimulate future research.
Dendritic cells are vital to induce potent anti-viral immune responses. It will become clear to the reader that dendritic cells often play a dual role during viral infections. On the one hand they are able to mount potent antiviral immune responses, and on the other hand several viruses, including HIV-1, use DC as a vector to be transferred from the periphery to the lymph nodes where they infect their prime target.
The continued debate regarding the stage at which the human embryo conceived in the laboratory should be placed in the mother, combined with recent developments in culture media formulations, have brought the role of the human blastocyst in ART back into the spotlight. ART and the Human Blastocyst presents the proceedings of the International Symposium on ART and the Human Blastocyst held from March 30- April 2, 2000 in Dana Point, California. This book brings to the forefront the main issues raised with the transfer of embryos at the blastocyst stage, including the reduction of high order multiple gestations and the role of the blastocyst culture and transfer in facilitating successful single embryo transfer. Sections include gamete quality and pregnancy outcome, physiology of the embryo, blastocyst development in culture, blastocyst transfer and fate, and implantation. More than 40 illustrations and 25 tables complement the text. |
![]() ![]() You may like...
Woman Evolve - Break Up With Your Fears…
Sarah Jakes Roberts
Paperback
![]()
Labor Arbitration in America - The…
Mario F. Bognanno, Charles J. Coleman
Hardcover
R2,219
Discovery Miles 22 190
|