Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Medicine > Pre-clinical medicine: basic sciences
The medical profession requires extensive training and preparation in order to ensure the success and competency of future doctors and healthcare professionals. With an emphasis on professional development and medical education, current professionals in this field acknowledge the importance of residency programs and training in the professional development of future doctors. Optimizing Medicine Residency Training Programs presents a comprehensive overview of chapters ranging from the history of medicine to opportunities and research for further exploration geared toward the professional development and medical training for the next generation of doctors and healthcare professionals. This publication is an essential reference source for academicians, practitioners, and professionals interested in the education and training of modern medical professionals.
The aim of the book is to discuss the application of molecular pathology in cancer research, and its contribution in the classification of different tumors and identification of potential molecular targets, as well as how this knowledge may be translated into clinical practice, and the huge impact this field is likely to have in the next 5 to 10 years.
Synthetic mRNA is an attractive tool for mammalian cell reprogramming that can be used in basic research, as well as in clinical applications. Present mRNA in vitro synthesis is a rather simple procedure, which delivers a high yield of quality product. Various modifications may be introduced into the mRNA by changing the sequence of the DNA template, by modifying the reaction of transcription, or by post-transcriptional modification. mRNA, as a transfection agent, has several advantages over DNA, as mRNA expression is not dependent on nuclear entry and occurs directly in the cytosol. Synthetic Messenger RNA and Cell Metabolism Modulation: Methods and Protocols covers the typical main methods, such as mRNA synthesis, modifications, and delivery. Examples of cell reprogramming and analysis in the fields of immunotherapy and stem cell research are also included. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Synthetic Messenger RNA and Cell Metabolism Modulation: Methods and Protocols will be of interest to researchers, clinicians, and biotech companies interested in mRNA-mediated cell reprogramming.
The Biogenesis of Cellular Organelles represents a comprehensive summary of recent advances in the study of the biogenesis and functional dynamics of the major organelles operating in the eukaryotic cell. This book begins by placing the study of organelle biogenesis in a historical perspective by describing past scientific strategies, theories, and findings and relating these foundations to current investigations. Reviews of protein and lipid mediators important for organelle biogenesis are then presented, and are followed by summaries focused on the endoplasmic reticulum, Golgi, lysosome, nucleus, mitochondria, and peroxisome. All chapters are written by experts in their fields and, though concentrated on particular topics, are integrated under the general themes of organelle structure, function, dynamics, and biogenesis. An understanding of these concepts is important for all researchers and students interested in general cell biology and particularly to those with interests in organelle function.
This new edited volume in the Springer Subcellular Biochemistry Series presents a comprehensive, state-of-the-art overview of the proteomics of peroxisomes derived from mammalian, Drosophila, fungal, and plant origin, and contains contributions from leading experts in the field. The development of sensitive proteomics and mass spectrometry technologies, combined with bioinformatics approaches now allow the identification of low-abundance and transient peroxisomal proteins and permits to identify the complete proteome of peroxisomes, with the consequent increase of our knowledge of the metabolic and regulatory networks of these important cellular organelles. The book lines-up with these developments and is organized in four sections including: (i) mass spectrometry-based organelle proteomics; (ii) prediction of peroxisomal proteomes; (iii) analysis of peroxisome proteome interaction networks; and (iv) peroxisomes in relation to other subcellular compartments. The editor Luis A. del Rio is Professor ad honorem of the Spanish National Research Council (CSIC) in the Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell & Molecular Biology of Plants, at the Estacion Experimental del Zaidin, Granada, Spain. Del Rio's research group focuses on the metabolism of reactive oxygen species (ROS), reactive nitrogen species (RNS) and antioxidants in plant peroxisomes, and the ROS- and RNS-dependent role of peroxisomes in plant cell signalling. The editor Michael Schrader is Professor of Cell Biology & Cytopathology in the Department of Biosciences at the University of Exeter, UK. Using mammalian peroxisomes as model organelles, Prof. Schrader and his team aim to unravel the molecular machinery and signalling pathways that mediate and regulate the formation, dynamics and abundance of these medically relevant cellular compartments.
Accumulating evidence supports the role of defects in post-transcriptional gene regulation in the development of cancer. RNA and Cancer examines the recent advances in our understanding of post-transcriptional gene regulation, especially RNA processing and its role in cancer development and treatment. A particular focus is mRNA splicing, but other topics such as microRNAs, mRNA stability, the perinucleolar compartment, and oligonucleotide therapeutics are also covered in detail. All chapters have been written by internationally renowned experts. The book is intended for all with an interest in gene regulation and cancer biology, and especially for those not directly working on RNA biology, including clinicians and medical students. It is hoped that it will stimulate further innovative research collaborations between RNA biologists and cancer researchers to the benefit of patients.
This book highlights a new paradigm of translation control by regulatory nascent polypeptides, which is integrated into cellular regulatory systems. Translation lies in the hub of the central dogma of biology, in which the genetic information in the forms of 4-letter sentences is translated into 20-letter sentences: sequences of amino acids that constitute proteins, the functional molecules of life. The process involves a huge number of chemical reactions as well as physical movements of the ribosome along a messenger RNA and takes, on average, tens of seconds in prokaryotes and a few minutes in eukaryotes. Detailed knowledge about the progression of translation, called "elongation", only recently started to accumulate. Newly synthesized and growing polypeptides, called nascent polypeptides, can interact with the intra-ribosomal conduit, called the ribosomal exit tunnel, when they have some specific amino acid sequences, called "an arrest sequence". Such interaction leads to a halt in the elongation reaction. Resulting stalling of the ribosome on messenger RNA can affect the secondary structure and/or localization of the message in the cell, consequently leading to biological outputs such as elevation or reduction of a gene product. This book provides a first collection of knowledge focused on regulatory nascent polypeptides, which have been studied recently using diverse organisms including bacteria, plants, and animals. Readers will be impressed by a new paradigm showing that proteins can function even during the course of their biosynthesis and that the ribosome, the "factory" of protein production, interacts with and inspects its products to adjust the speed of completion of each product. Moreover, regulatory nascent polypeptides can sense or monitor physiological states of the cell and modulate its ability to arrest translation. Living organisms use such intricate control mechanisms of translational speed to regulate gene expression. This book will be a useful addition for established scientists while inspiring students and young scientists to gain deeper insights into the processes of expression of genetic information.
Recent stem cell research has revealed that miRNA and RNAi-mediated gene regulation is one of the vital determinates controlling the state of cell differentiation, with the small RNAs serving as key elements involved in regulatory network control of pluripotent cell fate determination. In RNAi and microRNA-Mediated Gene Regulation in Stem Cells: Methods, Protocols, and Applications, expert authors from laboratories across the globe contribute an accessible compendium of up-to-date, proven methods focused on the study of the titular topic. Divided into three sections, the book first gives a brief introduction to RNAi and miRNAs in stem cells, with a focus on the current status of research and future perspectives, then it continues with detailed methods and protocols for RNAi screening, transfection, and the knockdown of specific genes and pathways in several animal species, including humans and mice, concluding with a section on recently developed methods for identification of miRNAs, including a general protocol for preparation and analysis of miRNA libraries for deep sequencing, knock down of a specific gene using miRNA-based shRNA, and miRNA expression analysis using qRT-PCR. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes highlighting tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, RNAi and microRNA-Mediated Gene Regulation in Stem Cells: Methods, Protocols, and Applications serves as a valuable resource for scientists and aspiring graduate students interested in the intersection of RNAi, miRNA, and stem cell molecular biology and the exciting areas of medicine, including regenerative medicine, aging, cancer, and neurological disorders, that can be advanced through this expanding area of research.
This volume explores the latest developments in a novel area of molecular biology and a hot topic in the field of oncology: cancer stem cells. These chapters from expert contributing authors present concepts such as the universal stem cell, new molecular pathways, new targeted agents, the different roles that cancer stem cells seem to have according to the organ they are placed in, and the future role that targeting cancer stem cells may have in the management of patients in the clinic. Exploring the latest research including new data from randomized trials, this book examines important proposals over the origin of cancer stem cells such as the possibility that cancer stem cells may arise from mutated stem cells or a fully differentiated cell that may undergo several mutations that drive it back to a stem-like state. The authors consider the role that stem cells seem to have in the onset, development and resistance to classical antitumoral treatments of cancer and discuss possible potential future treatment modalities for the management of advanced cancer patients. The question, "Are stem cells involved in cancer?" may not have a simple answer, but ongoing investigations, in-depth consideration and a broad spectrum of information can be found in this book, allowing the reader to arrive at his or her own answer. This book will appeal to researchers in the field of oncology and cancer research and biomedical scientists with an interest in stem cells.
This superbly structured text is designed for practical ease of use. Quick and easy to read, it bridges the gap between primary literature and daily practice in this specialized field. Neuro-ophthalmology encompasses lesions of both the afferent and efferent pathways, which can result from various etiologies, including tumoral, paraneoplastic, vascular, inflammatory, infectious, or hereditary just to name a few. This volume of Essentials in Ophthalmology is dedicated to the review of new developments in neuro-ophthalmology. It has been written by an array of authors with real expertise in the subject. The text includes all the latest developments, including those in diagnosis, physiology, investigations, and in therapeutic options.
Human beings have been using intoxicating substances for millennia. But while most people have used psychoactive substances without becoming dependent on them, a significant minority develop substance use disorders. The question remains: why does addiction occur in some and not others? The 61st installment of the Nebraska Symposium on Motivation, Genes and the Motivation to Use Substances probes the complex role of genetics in substance use and abuse across diverse methodologies, research organisms, levels of analysis and disciplines. Its combined lifespan/motivation approach to individual differences sheds necessary light on genetic vs. environmental factors in vulnerability, addiction risk, the relationship between behavioral disinhibition and substance use and the motivation to quit. While alcohol use/abuse is the focus of much of the book, its chapters provide scientific and clinical insights into substance abuse in general as well as implications for treatment. And an intriguing conclusion discusses the need to bridge the gap between genetics and neuroscience and the best scientific conditions in which this integration may thrive. Included in the coverage: * Rodent models of genetic contributions to the motivation to use alcohol. * The adolescent origins of substance abuse disorders * The developmental matrix of addictive behavior * The genetics of cannabis involvement * The DNA methylation signature of smoking * Genomics of impulsivity: integrating genetics and neuroscience. Reflecting the current state of knowledge in a field with groundbreaking potential, Genes and the Motivation to Use Substances is a fascinating resource for psychologists, psychiatrists, geneticists, neuroscientists, social workers, policymakers and researchers in addiction.
The integrin family is composed of 24 members and approximately ten years ago (2003) we published a book devoted to the nine I domain integrin subunits. In this second edition, I am pleased that most of the original authors have been able to contribute to the updated version. I domain containing integrins include collagen receptors and leukocyte receptors. In 2003 the knockout mouse phenotypes for all of the I domain integrins had not yet been published; they are now, and are summarized and discussed in this edition. Interestingly, a recent 10 integrin mutation in dogs has indicated that collagen-binding integrins in the musculoskeletal system might have much more severe phenotypes in larger animals/humans compared to the mild integrin phenotypes observed in collagen-binding integrin deficient mice. This finding is further discussed in the book. In the cancer field, the microenvironment is taking center stage, and here collagen receptors on fibroblasts are predicted to play important roles in paracrine signaling, in regulating tissue stiffness and matrix remodeling. New technologies, new mouse models in combination with analyses of I integrins in larger animals/humans are thus predicted to increase our knowledge about this group of receptors. With this in mind we look forward to another 10 years of research with I domain integrins.
This title will focus on the study of human interphase chromosomes and its relation to health and disease. Orchestrated organization and human genome function in interphase nuclei at the chromosomal level have been repeatedly shown to play a significant role in a variety of basic biological processes involved in realization and inheritance of genetic information within and between species. Current biomedical sciences of post-genomic era refocus basic and applied studies of interphase nuclei genetics and genomics with special attention to interphase chromosome behavior in health and disease. Additionally, related processes are a target of studies elucidating the role of interphase chromosome behavior during development, chromosome/DNA replication, DNA reparation etc. Studies of interphase nuclei have an appreciable impact on different areas of biomedical sciences such as cell biology, neurobiology, cancer research, developmental biology, epigenetics, cytogenetics, and medical genetics, as a whole. Moreover, development of innovative and emergent technologies to analyze interphase nuclei are closely associated with application of these techniques in clinical, diagnostic and research practice to solve reproductive problems (including infertility and spontaneous abortions), to investigate congenital malformations (including those produced by aneuploidy and other chromosome abnormalities); genetic diseases (including cardiac, immune, neurological and psychiatric diseases), and cancer. This title will serve as a source of new valuable information and promising ideas for a wide audience of professionals in biomedicine including researchers, scientists, and healthcare professionals in human genetics, cytogenetics, and developmental biology.
* Discusses cancer cell biology in relation to Genome stability and Cell cycle regulation Unique assembly of experts in these fields who wrote a comprehensive and deep up-to-date overview Discusses models for the understanding of DNA damage-dependent signal transduction and regulation in human cells Since the establishment of the DNA structure researchers have been highly interested in the molecular basis of the inheritance of genes and of genetic disorders. Scientific investigations of the last two decades have shown that, in addition to oncogenic viruses and signalling pathways alterations, genomic instability is important in the development of cancer. This view is supported by the findings that aneuploidy, which results from chromosome instability, is one of the hallmarks of cancer cells. Chromosomal instability also underpins our fundamental principles of understanding tumourigenesis: It thought that cancer arises from the sequential acquisition of genetic alterations in specific genes. In this hypothesis, these rare genetic events represent rate-limiting bottlenecks' in the clonal evolution of a cancer, and pre-cancerous cells can evolve into neoplastic cells through the acquisition of somatic mutations. This book is written by international leading scientists in the field of genome stability. Chapters are devoted to genome stability and anti-cancer drug targets, histone modifications, chromatin factors, DNA repair, apoptosis and many other key areas of research. The chapters give insights into the newest development of the genome stability and human diseases and bring the current understanding of the mechanisms leading to chromosome instability and their potential for clinical impact to the reader.
Hedgehog-GLI Signaling in Human Disease represents the first compilation of up-to-date reviews by top-level scientists in this important field of research. The chapters cover a wide spectrum of related interests, from the molecular bases of morphogen function, to human genetics to cancer research. The aim of the book is to disseminate information on this exciting field, to allow students, scientists and the public in general to gain access current information from research leaders and to provide a book that encompasses different aspects of research showing the fusion of basic research in model systems and medicine. This is a timely primer on how a system of cell communication, Hedgehog-GLI signaling, plays a critical role in human disease and thus provides the background for the development of novel and rational therapies.
From the 40th annual conference of the International Society on Oxygen Transport to Tissue (ISOTT), held in Bruges, Belgium in August 2012, this volume covers aspects of clinical applications, muscle oxygenation, cancer, measurement technologies, oxygen transport modelling and Near-Infrared Spectroscopy (NIRS), cell metabolism and brain oxygenation. Each topic was presented by one or two invited speakers, and a series of contributed talks.
Structural Genomics and Drug Discovery: Methods and Protocols focuses on high throughput structure determination methods and how they can be applied to lay the groundwork for structure aided drug discovery. The methods and protocols that are described can be applied in any laboratory interested in using detailed structural information to advance the initial stages of drug discovery. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Structural Genomics and Drug Discovery: Methods and Protocols seeks to aid scientists in the further study into structural genomics approach as an efficient initial step toward drug discovery and the methods described will be useful to anyone interested in moving in this direction.
RNA technologies are the driving forces of modern medicine and biotechnology. They combine the fields of biochemistry, chemistry, molecular biology, cell biology, physics, nanotechnology and bioinformatics. The combination of these topics is set to revolutionize the medicine of tomorrow. After more than 15 years of extensive research in the field of RNA technologies, the first therapeutics are ready to reach the first patients. Thus we are witnessing the birth of a very exciting time in the development of molecular medicine, which will be based on the methods of RNA technologies. This volume is the first of a series. It covers various aspects of RNA interference and microRNAs, although antisense RNA applications, hammerhead ribozyme structure and function as well as non-coding RNAs are also discussed. The authors are internationally highly respected experts in the field of RNA technologies.
In today's world, three great classes of non-infectious diseases - the metabolic syndromes (such as type 2 diabetes and atherosclerosis), the cancers, and the neurodegenerative disorders - have risen to the fore. These diseases, all associated with increasing age of an individual, have proven to be remarkably complex and difficult to treat. This is because, in large measure, when the cellular signaling pathways responsible for maintaining homeostasis and health of the body become dysregulated, they generate equally stable disease states. As a result the body may respond positively to a drug, but only for a while and then revert back to the disease state. Cellular Signaling in Health and Disease summarizes our current understanding of these regulatory networks in the healthy and diseased states, showing which molecular components might be prime targets for drug interventions. This is accomplished by presenting models that explain in mechanistic, molecular detail how a particular part of the cellular signaling web operates properly in health and improperly in disease. The stability of the health- and disease-associated states is dynamic and supported by multiple feedback loops acting positively and negatively along with linkages between pathways. During the past few years an ongoing series of important discoveries have been made that advance our understanding of how the body works and may guide us on how to better deal with these diseases. These include the discovery of chronic inflammation as a causal factor in all of these disease classes, the appearance of reactive oxygen species as a messenger molecule that can act both positively and negatively, the propensity of proteins to misfold into aggregation- and disease-prone forms, and the rise of epigenetics including the emergence of small non-coding RNA with important regulatory functions out of the so-called junk RNA. Chapters are devoted to each of these classes of findings with additional details integrated into the chapters dealing directly with the diseases. The connections responsible for maintaining stability are explored in depth.
Ultimately, the quality of the tools available for genetic analysis and experimental disease models will be assessed on the basis of whether they provide new information that generates novel treatments for human disease. In addition, the time frame in which genetic discoveries impact clinical practice is also an important dimension of how society assesses the results of the significant public financial investment in genetic research. Because of the investment and the increased expectation that new tre- ments will be found for common diseases, allowing decades to pass before basic discoveries are made and translated into new therapies is no longer acceptable. Computational Genetics and Genomics: Tools for Understanding Disease provides an overview and assessment of currently available and developing tools for genetic analysis. It is hoped that these new tools can be used to identify the genetic basis for susceptibility to disease. Although this very broad topic is addressed in many other books and journal articles, Computational Genetics and Genomics: Tools for Understanding Disease focuses on methods used for analyzing mouse genetic models of biomedically - portant traits. This volume aims to demonstrate that commonly used inbred mouse strains can be used to model virtually all human disea- related traits. Importantly, recently developed computational tools will enable the genetic basis for differences in disease-related traits to be rapidly identified using these inbred mouse strains. On average, a decade is required to carry out the development process required to demonstrate that a new disease treatment is beneficial.
Topics covered in this volume include pheromone reception in mammals, elucidation of mammalian bitter taste, synaptic modulation in pain pathways, the vertebrate phototransduction cascade, and amplification and termination mechanisms.
This book provides a conceptual and computational framework to study how the nervous system exploits the anatomical properties of limbs to produce mechanical function. The study of the neural control of limbs has historically emphasized the use of optimization to find solutions to the muscle redundancy problem. That is, how does the nervous system select a specific muscle coordination pattern when the many muscles of a limb allow for multiple solutions? I revisit this problem from the emerging perspective of neuromechanics that emphasizes finding and implementing families of feasible solutions, instead of a single and unique optimal solution. Those families of feasible solutions emerge naturally from the interactions among the feasible neural commands, anatomy of the limb, and constraints of the task. Such alternative perspective to the neural control of limb function is not only biologically plausible, but sheds light on the most central tenets and debates in the fields of neural control, robotics, rehabilitation, and brain-body co-evolutionary adaptations. This perspective developed from courses I taught to engineers and life scientists at Cornell University and the University of Southern California, and is made possible by combining fundamental concepts from mechanics, anatomy, mathematics, robotics and neuroscience with advances in the field of computational geometry. Fundamentals of Neuromechanics is intended for neuroscientists, roboticists, engineers, physicians, evolutionary biologists, athletes, and physical and occupational therapists seeking to advance their understanding of neuromechanics. Therefore, the tone is decidedly pedagogical, engaging, integrative, and practical to make it accessible to people coming from a broad spectrum of disciplines. I attempt to tread the line between making the mathematical exposition accessible to life scientists, and convey the wonder and complexity of neuroscience to engineers and computational scientists. While no one approach can hope to definitively resolve the important questions in these related fields, I hope to provide you with the fundamental background and tools to allow you to contribute to the emerging field of neuromechanics.
Edward B. Lewis' science is the bridge linking experimental genetics as conducted in the first half of the 20th century, and the powerful molecular genetic approaches that revolutionized the field in its last quarter. His Nobel Prize winning studies founded the field of developmental genetics and laid the groundwork for our current understanding of the universal, evolutionarily conserved strategies controlling animal development. A lesser-known aspect of Lewis' canon is the pioneering studies he carried out on ionizing radiation and human cancer. In doing so, he was propelled into a public storm over nuclear weapons testing policy. For the first time Lewis' key publications in the fields of genetics, developmental biology, radiation and cancer are compiled within one volume. commentaries on the papers placing them in their scientific and historical context and, throughout, giving insight into Lewis' approach to science and the motivations that drove Lewis' choice of subject matter. This book will be invaluable to a wide audience of professionals in the life and biomedical sciences; including geneticists, developmental biologists, molecular biologists, radiation biologists and cancer researchers. It provides source material for advanced undergraduate and graduate level courses in genetics, developmental biology, radiation and cancer. In addition, historians of science will find it to be a valuable resource both because it contains original research publications and because of the illuminating commentary. |
You may like...
Risking Life For Death - Lessons For The…
Ryan Blumenthal
Paperback
(1)
Genetic Variation
Rafael Trindade Maia, Magnolia de Araujo Campos
Hardcover
Trigger Points - Use the Power of Touch…
Amanda Oswald
Hardcover
(1)
Productivity with Health, Safety, and…
Not available
Lakhwinder Pal Singh, Arvind Bhardwaj, …
Hardcover
R5,244
Discovery Miles 52 440
Primary Immunodeficiency Diseases - A…
Hans D. Ochs, C.I. Edvard Smith, …
Hardcover
R8,443
Discovery Miles 84 430
Loose Leaf for Hole's Human Anatomy…
Charles Welsh, Cynthia Prentice-Craver
Loose-leaf
R5,028
Discovery Miles 50 280
|