![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture
This proceeding includes original and peer-reviewed research papers from the 3rd International Conference on Control, Instrumentation and Mechatronics Engineering (CIM2022). The conference is a virtual conference held on 2-3 March 2022. The topics covered latest work and finding in the area of Control Engineering, Mechatronics, Robotics and Automation, Artificial Intelligence, Manufacturing, Sensor, Measurement and Instrumentation. Moreover, the latest applications of instrumentations, control and mechatronics are provided. Therefore, this proceeding is a valuable material for researchers, academicians, university students and engineers.
One of George Daniels's central contributions to horology is his co-axial escapement. Having observed that the dominant lever escapement begins to change its rate after a year or two -- a disturbance caused by the sliding action of the impulse elements of the escapement -- Daniels set about developing a mechanism that avoided this problem. The result of his efforts was the co-axial escapement, a mechanism in which he sought to combine the strengths and eliminate the deficiencies of existing watch escapements, the lever escapement foremost among them. First devised in 1977, today it remains largely the same as fitted in watches of Daniels's own manufacture, as well as those of several wrist-watch manufacturers. This book explains the action of the escapement in terms accessible to both expert and layman, and is accompanied by a series of detailed line drawings.
This book is a comprehensive introduction to nanoscale materials for sensor applications, with a focus on connecting the fundamental laws of physics and the chemistry of materials with device design. Nanoscale sensors can be used for a wide variety of applications, including the detection of gases, optical signals, and mechanical strain, and can meet the need to detect and quantify the presence of gaseous pollutants or other dangerous substances in the environment. Gas sensors have found various applications in our daily lives and in industry. Semiconductive oxides, including SnO2, ZnO, Fe2O3, and In2O3, are promising candidates for gas sensor applications. Carbon nanomaterials are becoming increasingly available as off-the-shelf components, and this makes nanotechnology more exciting and approachable than ever before. Nano-wire based field- effect transistor biosensors have also received much attention in recent years as a way to achieve ultra-sensitive and label-free sensing of molecules of biological interest. A diverse array of semiconductor-based nanostructures has been synthesized for use as a photoelectrochemical sensor or biosensor in the detection of low concentrations of analytes. A novel acoustic sensor for structural health monitoring (SHM) that utilizes lead zirconate titanate (PZT) nano- active fiber composites (NAFCs) is described as well.
1 1. 1 Introduction The (signal processing and storage) capacity ofthe human brain enables us to become powerful autonomous beings, but only if our brains operate in conjunction with (at least some of) our senses and muscles. Using these organs, we can interact with our environment, learn to adapt, and improve important aspects of our life. Similarly, the signal processing capabilities of modern electronics (computers) could be combined with electronic sensors and actuators to enable interaction with, and adaptation to, the (non-electrical) environment. This willlead to smarter and more powerful automated tools and machines. To facilitate and stimulate such a development, easy-to-use low-cost sensors are needed. The combination of electronic interface functions and a sensor in an integrated smart sensor, that provides a standard, digital, and bus-compatible output, would simplify the connection of sensors to standard electronic signal processors (microcontrollers, computers, etc. ). Currently, the calibration procedure, required for standardization of the sensor output signal level, contributes largely to the production costs of accurate sensors. To enable automation of the calibration procedure, and hence reduce the sensor fabrication costs, a digital calibrationjunction should be included in the smart sensor. INTEGRATED SMART SENSORS: Design and Calibration Introduction 1. 2 Sensors and actuators In industry many processes are electronically controlled. As depicted in Fig.
This book covers a wide range of topics relating to carbon nanomaterials, from synthesis and functionalization to applications in advanced biomedical devices and systems. As they possess unique and attractive chemical, physical, optical, and even magnetic properties for various applications, considerable effort has been made to employ carbon nanomaterials (e.g., fullerenes, carbon nanotubes, graphene, nanodiamond) as new materials for the development of novel biomedical tools, such as diagnostic sensors, imaging agents, and drug/gene delivery systems for both diagnostics and clinical treatment. Tremendous progress has been made and the scattered literature continues to grow rapidly. With chapters by world-renowned experts providing an overview of the state of the science as well as an understanding of the challenges that lie ahead, Carbon Nanomaterials for Biomedical Applications is essential reading not only for experienced scientists and engineers in biomedical and nanomaterials areas, but also for graduate students and advanced undergraduates in materials science and engineering, chemistry, and biology.
This profusely illustrated volume forms a step-by-step instruction manual on the repair of mechanical clocks and watches. Donald de Carle was a Fellow of the British Horological Institute, and the author of many standard works on the subject of horology, who based his writings on many years of practical experience. The book begins with simple clocks and watches then proceeds to more complicated types. The tools and apparatus needed are described and illustrated. Modern types of mechanical clock are mainly dealt with, but attention is also given to the movements of older long case and fusee types as many of them are now being repaired as a result of interest in antique clocks. The chapters on watch repairing deal with chronographs and repeaters as well as self-winding mechanisms. The latest developments in ultrasonic cleaning of horological movements and their electronic timing are also described and illustrated. This work is an invaluable guide for all concerned with the repair not only of clocks and watches but also of small mechanisms in general.
Now back in print, this life of George Eastman is the first biography since 1930 of the man who transformed the world of photography. In this revealing and informative work, Brayer shows us how such key innovations as roll film and the light, hand-held camera helped the Eastman Kodak Company dominate the world market. More importantly, Brayer draws a vivid portrait of the man behind the money. Eastman worked hard at staying out of the limelight and even insisted that his donations be kept anonymous, prompting the Boston Globe to call him "America's most modest and least-known millionaire." Despite his retirement in 1925, Eastman showed little sign of slowing down. Making money had been interesting, but putting money to work became more so. In the 1920s he designed a special camera for use in orthodontia and established elaborate dental clinics for needy children around the world. He oversaw the building of the Eastman theatre and the Eastman School of Music. His contributions built a new campus for the Massachusetts Institute of Technology and a new medical school for the University of Rochester. Finally, he became the largest contributor to the education of African Americans during the 1920s and the Tuskegee Institute's most important benefactor. Elizabeth Brayer lives in Rochester, NY. For the past 18 years she has served on both the George Eastman Legacy and the Landscape committees at the George Eastman House, International Museum of Photography and Film. She writes about the history of central and Western New York State. George Eastman: A Biography was nominated for a Pulitzer Prize in 1996.
A variety of nanomaterials have excellent optoelectronic and electronic properties for novel device applications. At the same time, and with advances in silicon integrated circuit (IC) techniques, compatible Si-based nanomaterials hold promise of applying the advantages of nanomaterials to the conventional IC industry. This book focuses not only on silicon nanomaterials, but also summarizes up-to-date developments in the integration of non-silicon nanomaterials on silicon. The book showcases the work of leading researchers from around the world who address such key questions as: Which silicon nanomaterials can give the desired optical, electrical, and structural properties, and how are they prepared? What nanomaterials can be integrated on to a silicon substrate and how is this accomplished? What Si-based nanomaterials may bring a breakthrough in this field? These questions address the practical issues associated with the development of nanomaterial-based devices in applications areas such as solar cells, luminous devices for optical communication (detectors, lasers), and high mobility transistors. Investigation of silicon-based nanostructures is of great importance to make full use of nanomaterials for device applications. Readers will receive a comprehensive view of Si-based nanomaterials, which will hopefully stimulate interest in developing novel nanostructures or techniques to satisfy the requirements of high performance device applications. The goal is to make nanomaterials the main constituents of the high performance devices of the future.
This book provides the state-of-the-art survey of green techniques in preparation of different classes of nanomaterials, with an emphasis on the use of renewable sources. Key topics covered include fabrication of nanomaterials using green techniques as well as their properties and applications, the use of renewable sources to obtain nanomaterials of different classes, from simple metal and metal oxide nanoparticles to complex bioinspired nanomaterials, economic contributions of nanotechnology to green and sustainable growth, and more. This is an ideal book for students, lecturers, researchers and engineers dealing with versatile (mainly chemical, biological, and medical) aspects of nanotechnology, including fabrication of nanomaterials using green techniques and their properties and applications.
Validation of computer systems is the process that assures the formal assessment and report of quality and performance measures for all the life-cycle stages of software and system development, its implementation, qualification and acceptance, operation, modification, requalification, maintenance and retirement (PICS CSV PI 011-3). It is a process that demonstrates the compliance of computer systems functional and non-functional requirements, data integrity, regulated company procedures and safety requirements, industry standards, and applicable regulatory authority's requirements. Compliance is a state of being in adherence to application-related standards or conventions or regulations in laws and similar prescriptions. This book, which is relevant to the pharmaceutical and medical devices regulated operations, provides practical information to assist in the computer validation to production systems, while highlighting and efficiently integrating worldwide regulation into the subject. A practical approach is presented to increase efficiency and to ensure that the validation of computer systems is correctly achieved.
This book introduces readers to the shell structure, operating principle, manufacturing process, and control theory for cylindrical vibratory gyroscopes. The cylindrical vibratory gyroscope is an important type of Coriolis vibratory gyroscope that holds considerable potential for development and application. The main aspects addressed include: operating principle and structure, theoretical analysis and modeling, dynamic analysis and modeling, manufacturing process, parameter testing methods, closed-loop control, and the error compensation mechanism in cylindrical vibratory gyroscopes.
The sense of touch is fundamental during the interaction between humans and their environment; in virtual reality, objects are created by computer simulations and they can be experienced through haptic devices. In this context haptic textures are fundamental for a realistic haptic perception of virtual objects. This book formalizes the specific artefacts corrupting the rendering of virtual haptic textures and offers a set of simple conditions to guide haptic researchers towards artefact-free textures. The conditions identified are also extremely valuable when designing psychophysical experiments and when analyzing the significance of the data collected. "The Synthesis of Three Dimensional Haptic Textures, Geometry, Control, and ""Psychophysics "examines the problem of rendering virtual haptic textures with force feedback devices. The author provides an introduction to the topic of haptic textures that covers the basics of the physiology of the skin, the psychophysics of roughness perception, and the engineering challenges behind haptic textures rendering. The book continues with the presentation of a novel mathematical framework that characterizes haptic devices, texturing algorithms and their ability to generate realistic haptic textures. Finally, two psychophysical experiments link the perception of roughness with the parameters of the haptic rendering algorithms. This book formalizes the specific artefacts corrupting the rendering of virtual haptic textures and offers a set of simple conditions to guide haptic researchers towards artefact-free textures. The conditions identified are also extremely valuable when designing psychophysical experiments and when analyzing the significance of the data collected.
Grain boundaries are a main feature of crystalline materials.
They play a key role in determining the properties of materials,
especially when grain size decreases and even more so with the
current improvements of processing tools and methods that allow us
to control various elements in a polycrystal. The book is divided in three parts: This part covers a new and topical development in the field. It presents for the first time an avenue for researchers working on macroscopic aspects, to approach the scale of description of grain boundaries. Audience: graduate students, researchers and engineers in Materials Science and all those scientists pursuing grain boundary engineering in order to improvematerials performance.
This thesis presents various applications of graphene-based nanomaterials, especially in biomedicine. Graphene and its derivatives have gained enormous attention from scientists in all fields of study due to many unprecedented properties. The initial scientific attention was focused on the development of transparent flexible electrodes by exploiting two-dimensional graphene film's extraordinary electrical and physical properties. Recently, given an increasing evidence of dispersed graphene-based nanomaterials' biocompatibility, researchers have endeavored to employ these materials in other studies relevant to biomedical technologies. In this respect, the thesis provides a comprehensive review on the synthesis, toxicity, and a few of the key biomedical applications in the first chapter. The following chapter discusses the use of a graphene film as a novel catalyst to oxidatively destroy phenols, which are known to be potentially mutagenic and carcinogenic. Finally, and most importantly, the last chapter introduces the therapeutic role of graphene quantum dots, the smallest graphene-based nanomaterials, for Parkinson's disease. The results are promising for the use of graphene quantum dots as the basis of future clinical drug candidates for neurodegenerative disorders.
This book presents best selected research papers presented at the Thirteenth International Conference on Applied Mathematics and Mechanics in the Aerospace Industry (AMMAI 2020), held from September 6 to September 13, 2020, at the Alushta Health and Educational Center (The Republic of Crimea). The book is dedicated to solving actual problems of applied mechanics using modern computer technology including smart paradigms. Physical and mathematical models, numerical methods, computational algorithms, and software complexes are discussed, which allow to carry out high-precision mathematical modeling in fluid, gas, and plasma mechanics, in general mechanics, deformable solid mechanics, in strength, destruction and safety of structures, etc. Technologies and software systems that provide effective solutions to the problems at various multi-scale levels are considered. Special attention is paid to the training of highly qualified specialists for the aviation and space industry. The book is recommended for specialists in the field of applied mathematics and mechanics, mathematical modeling, information technologies, and developers of modern applied software systems.
This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.
This book presents the latest research on mechatronic systems engineering. By bringing together the most important papers from the 2018 Mechatronics Forum Conference 'Reinventing Mechatronics,' it outlines key trends in research and applications that will define mechatronics for the next 50 years. Mechatronics was established as an engineering discipline over 50 years ago, as the integration of electronics and information technology with mechanical design. Given major technological advances and the growth of systems-level concepts such as Cyber-Physical Systems and the Internet of Things, along with Cloud Technologies and Big Data, it's now high time to reconsider the role of mechatronics, particularly within engineering design. Past and ongoing technological changes are impacting how systems are designed and configured in ways that could never have been envisaged when the field of mechatronics was first introduced.
Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978Strong emphasis on how to effectively use software design packages, indispensable to today s lens designerMany new lens design problems and examples - ranging from simple lenses to complex zoom lenses and mirror systems - give insight for both the newcomer and specialist in the field Rudolf Kingslake is regarded as the American father of lens design; his book, not revised since its publication in 1978, is viewed as a classic in the field. Naturally, the area has developed considerably since the book was published, the most obvious changes being the availability of powerful lens design software packages, theoretical advances, and new surface fabrication technologies. This book provides the skills and knowledge to move into the exciting world of contemporary lens design and develop practical lenses needed for the great variety of 21st-century applications. Continuing to focus on fundamental methods and procedures of lens design, this revision by R. Barry Johnson of a classic modernizes symbology and nomenclature, improves conceptual clarity, broadens the study of aberrations, enhances discussion of multi-mirror systems, adds tilted and decentered systems with eccentric pupils, explores use of aberrations in the optimization process, enlarges field flattener concepts, expands discussion of image analysis, includes many new exemplary examples to illustrate concepts, and much more. Optical engineers working in lens design will find this book an invaluable guide to lens design in traditional and emerging areas of application; it is also suited to advanced undergraduate or graduate course in lens design principles and as a self-learning tutorial and reference for the practitioner. Rudolf Kingslake (1903-2003) was a founding faculty member of the Institute of Optics at The University of Rochester (1929) and remained teaching until 1983. Concurrently, in 1937 he became head of the lens design department at Eastman Kodak until his retirement in 1969. Dr. Kingslake published numerous papers, books, and was awarded many patents. He was a Fellow of SPIE and OSA, and an OSA President (1947-48). He was awarded the Progress Medal from SMPTE (1978), the Frederic Ives Medal (1973), and the Gold Medal of SPIE (1980). R. Barry Johnson has been involved for over 40 years in lens
design, optical systems design, and electro-optical systems
engineering. He has been a faculty member at three academic
institutions engaged in optics education and research, co-founder
of the Center for Applied Optics at the University of Alabama in
Huntsville, employed by a number of companies, and provided
consulting services. Dr. Johnson is an SPIE Fellow and Life Member,
OSA Fellow, and an SPIE President (1987). He published numerous
papers and has been awarded many patents. Dr. Johnson was founder
and Chairman of the SPIE Lens Design Working Group (1988-2002), is
an active Program Committee member of the International Optical
Design Conference, and perennial co-chair of the annual SPIE
Current Developments in Lens Design and Optical Engineering
Conference.
This book highlights the various types of nanomaterials currently available and their applications in three major sectors: energy, health, and the environment. It addresses a range of aspects based on the fact that these materials' structure can be tailored at extremely small scales to achieve specific properties, thus greatly expanding the materials science toolkit. Further, the book pursues a holistic approach to nanomaterial applications by taking into consideration the various stakeholders who use them. It explores several applications that could potentially be used to improve the environment and to more efficiently and cost-effectively produce energy, e.g. by reducing pollutant production during the manufacture of materials, producing solar cells that generate electricity at a competitive cost, cleaning up organic chemicals that pollute groundwater, removing volatile organic compounds (VOCs) from the air, and so on. Given its scope, the book offers a valuable asset for a broad readership, including professionals, students, and researchers from materials science/engineering, polymer science, composite technology, nanotechnology, and biotechnology whose work involves nanomaterials and nanocomposites.
This book comprehensively discusses the basic principles and working mechanism of all kind of batteries towards clean energy storage devices. In addition, it focuses on the synthesis of various electrode materials with 1D architecture via electrospinning technique. This book will give a clear idea about recent synthetic strategy towards nanofibers and nanocomposites for alkali-ion storage applications. The reader could understand the formation mechanism of nanofibers and their potential application in the future energy storage system.
This volume is based on some representative contributions presented in the wo- shop: "Trends in nanophysics: theory, experiment, technology," which took place in Sibiu, Romania, 23-29 August 2009, being organized by ICTP-Trieste, IAEA, IFIN-HH - Bucharest and ULB - Sibiu. The aim of this workshop was to faci- tate experts and active researchers to exchange ideas and information on the most recent results in nanophysics and nanotechnology. It was also an opportunity for young researchers and for researchers from developing countries to enlarge their knowledge and to approach new themes in this area. In fact, the articles contained in this book represent written and enriched versions of the workshop oral presentations. The topics covered by them are the following: 1. Ordered atomic-scale structures 2. Nanowires: growth and properties 3. Transport phenomena in nanostructures 4. Optical properties of nanostructures 5. Magnetic nanophases; magnetic and non-magnetic nanocomposites 6. Nano uids and ows at nanoscale 1 Ordered Atomic-Scale Structures The quest of a reliable method for fabricating ordered atomic-scale structures is a prerequisite for future atomic-scale technology - the ultimate goal of nanosciences.
The tenth anniversary edition of the dramatic human story of an epic scientific quest: the search for the solution of how to calculate longitude and the unlikely triumph of an English genius. With a new Foreword by the celebrated astronaut Neil Armstrong. 'Sobel has done the impossible and made horology sexy - no mean feat' New Scientist Anyone alive in the 18th century would have known that 'the longitude problem' was the thorniest scientific dilemma of the day - and had been for centuries. Lacking the ability to measure their longitude, sailors throughout the great ages of exploration had been literally lost at sea as soon as they lost sight of land. Thousands of lives, and the increasing fortunes of nations, hung on a resolution. The quest for a solution had occupied scientists and their patrons for the better part of two centuries when, in 1714, Parliament upped the ante by offering a king's ransom (GBP20,000) to anyone whose method or device proved successful. Countless quacks weighed in with preposterous suggestions. The scientific establishment throughout Europe - from Galileo to Sir Isaac Newton - had mapped the heavens in both hemispheres in its certain pursuit of a celestial answer. In stark contrast, one man, John Harrison, dared to imagine a mechanical solution. Full of heroism and chicanery, brilliance and the absurd, LONGITUDE is also a fascinating brief history of astronomy, navigation and clockmaking.
This book explores the different aspects of energy in human life especially expressing the advanced technologies in renewable energy resources. Due to the environmental pollution caused by fossil fuels and the non-permanent nature of these resources, the move towards the use of renewable energy has accelerated. In recent years, many attempts have been made to improve energy systems' performance by using multi-generation units, and these set-ups have been analyzed from the perspective of energy, exergy, economics, and environmental indicators. The book's primary goal is the effort to introduce new methods for assessing and upgrading the synergy. Therefore it examines sustainable practices such as water-energy-food nexus in poly-generation units, novel desalination systems, and smart greenhouses. One of the significant issues in these energy systems is the storage methods; for instance, carbon capture to reduce environmental pollution and the hydrogen store for the utilization in supplementary fuel. Also, robust optimization, uncertainty and risk-aware probabilistic analysis, energy management, and power supply of sensitive places such as oil rig platforms by renewables are examined.
This book is a comprehensive, interdisciplinary resource for the latest information on implantable medical devices, and is intended for graduate students studying electrical engineering, electronic instrumentation, and biomedical engineering. It is also appropriate for academic researchers, professional engineers, practicing doctors, and paramedical staff. Divided into two sections on Basic Concepts and Principles, and Applications, the first section provides an all-embracing perspective of the electronics background necessary for this work. The second section deals with pacing techniques used for the heart, brain, spinal cord, and the network of nerves that interlink the brain and spinal cord with the major organs, including ear and eye prostheses. The four main offshoots of implantable electronics, which this book discusses, are: The insertion of an implantable neural amplifier for accurate recording of neural signals for neuroengineering studies The use of implantable pulse generators for pacing the activities of diseased organs The use of implantable sensors for observing the influence of therapy and monitoring a patient's biological parameters The use of drug delivery systems to supervise the supply of accurate doses of medicine to affected parts Readers will also find chapters on the essentials of clocking and timing circuits, pulse generator circuits, neural amplifiers, batteries, biomaterials and biocompatibility, and more. Unique to this book is also a chapter on cyber security and confidentiality concerns with implants. End-of-chapter questions and exercises help readers apply the content to practical use, making this an ideal book for anyone wishing to learn more about implantable devices. |
You may like...
Oyster Perpetual Submariner - The Watch…
Nicholas Foulkes
Hardcover
Electronic Nose Technologies and…
Yousif Al-Bastaki, Fatema Albalooshi
Hardcover
R5,120
Discovery Miles 51 200
Flash Lamp Annealing - From Basics to…
Lars Rebohle, Slawomir Prucnal, …
Hardcover
R3,364
Discovery Miles 33 640
Dynamics and Control of Advanced…
Valerii P. Matveenko, Michael Krommer, …
Hardcover
R2,661
Discovery Miles 26 610
|