![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture
This volume summarizes the state-of-the-art technologies, key advances and future trends in the field of label-free biosensing. It provides detailed insights into the different types of solid-state, label-free biosensors, their underlying transducer principles, advanced materials utilized, device-fabrication techniques and various applications. The book offers graduate students, academic researchers, and industry professionals a comprehensive source of information on all facets of label-free biosensing and the future trends in this flourishing field. Highlights of the subjects covered include label-free biosensing with: * semiconductor field-effect devices such as nanomaterial-modified capacitive electrolyte-insulator-semiconductor structures, silicon nanowire transistors, III-nitride semiconductor devices and light-addressable potentiometric sensors * impedimetric biosensors using planar and 3D electrodes * nanocavity and solid-state nanopore devices * carbon nanotube and graphene/graphene oxide biosensors * electrochemical biosensors using molecularly imprinted polymers * biomimetic sensors based on acoustic signal transduction * enzyme logic systems and digital biosensors based on the biocomputing concept * heat-transfer as a novel transducer principle * ultrasensitive surface plasmon resonance biosensors * magnetic biosensors and magnetic imaging devices
Metallic quantum clusters belonging to intermediate size regime between two and few hundred of atoms, represent unique building blocks of new materials. Nonlinear optical (NLO) characteristics of liganded silver and gold quantum clusters reveal remarkable features which can be tuned by size, structure and composition. The two-photon absorption cross sections of liganded noble metal quantum clusters are several orders of magnitude larger than that of commercially-available dyes. Therefore, the fundamental photophysical understanding of those two-photon processes in liganded clusters with few metal atoms deserve special attention, in particularly in context of finding the mechanisms responsible for these properties. A broad range of state-of-the-art experimental methods to determine nonlinear optical properties (i.e. two-photon absorption, two-photon excited fluorescence and second harmonic generation) of quantum clusters are presented. The experimental setup and underlying physical concepts are described. Furthermore, the theoretical models and corresponding approaches are used allowing to explain the experimental observations and simultaneously offering the possibility to deduce the key factors necessary to design new classes of nanoclusters with large NLO properties. Additionally, selected studied cases of liganded silver and gold quantum clusters with focus on their NLO properties will be presented as promising candidates for applications in imaging techniques such as fluorescence microscopy or Second-Harmonic Generation microscopy.
Starting from a broad overview of heat transport based on the Boltzmann Transport Equation, this book presents a comprehensive analysis of heat transport in bulk and nanomaterials based on a kinetic-collective model (KCM). This has become key to understanding the field of thermal transport in semiconductors, and represents an important stride. The book describes how heat transport becomes hydrodynamic at the nanoscale, propagating very much like a viscous fluid and manifesting vorticity and friction-like behavior. It introduces a generalization of Fourier's law including a hydrodynamic term based on collective behavior in the phonon ensemble. This approach makes it possible to describe in a unifying way recent experiments that had to resort to unphysical assumptions in order to uphold the validity of Fourier's law, demonstrating that hydrodynamic heat transport is a pervasive type of behavior in semiconductors at reduced scales.
This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associated with testing and qualification Examples of commercialization paths for piezoelectric MEMS resonators in the timing and the filter markets ...and more! The authors present industry and academic perspectives, making this book ideal for engineers, graduate students, and researchers.
This book provides a comprehensive overview of the photonic sensing field by covering plasmonics, photonic crystal, and SOI techniques from theory to real sensing applications. A literature review of ultra-sensitive photonic sensors, including their design and application in industry, makes this a self-contained and comprehensive resource for different types of sensors, with high value to the biosensor sector in particular. The book is organized into four parts: Part I covers the basic theory of wave propagation, basic principles of sensing, surface plasmon resonance, and silicon photonics; Part II details the computational modeling techniques for the analysis and prediction of photonic sensors; Part III and Part IV cover the various mechanisms and light matter interaction scenarios behind the design of photonic sensors including photonic crystal fiber sensors and SOI sensors. This book is appropriate for academics and researchers specializing in photonic sensors; graduate students in the early and intermediate stages working in the areas of photonics, sensors, biophysics, and biomedical engineering; and to biomedical, environmental, and chemical engineers.
This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features selected peer-reviewed contributions from participants in the 5th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2017) held in Chernivtsi, Ukraine on August 23-26, 2017. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, Ivan Franko National University of Lviv (Ukraine), University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics and nanoplasmonics to interface studies. This book's companion volume also addresses topics such as energy storage and biomedical applications.
This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features selected peer-reviewed contributions from participants in the 5th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2017) held in Chernivtsi, Ukraine on August 23-26, 2017. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, Ivan Franko National University of Lviv (Ukraine), University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from energy storage to biomedical applications. This book's companion volume also addresses nanooptics, nanoplasmonics, and interface studies.
This book highlights what is now achievable in terms of materials characterization with the new generation of cold-field emission scanning electron microscopes applied to real materials at high spatial resolution. It discusses advanced scanning electron microscopes/scanning- transmission electron microscopes (SEM/STEM), simulation and post-processing techniques at high spatial resolution in the fields of nanomaterials, metallurgy, geology, and more. These microscopes now offer improved performance at very low landing voltage and high -beam probe current stability, combined with a routine transmission mode capability that can compete with the (scanning-) transmission electron microscopes (STEM/-TEM) historically run at higher beam accelerating voltage
This first edition of conference Proceedings reflects the expansion of the field of Mechatronics, which has now taken its place in the world of newer transdisciplinary fields of Adaptronics, Integronics, and Cyber-Mix Mechatronics. It presents state-of-the art advances in Mechatronics, Adaptronics, Integronics and Cyber-Mix-Mechatronics. The 1st International Conference of Mechatronics and Cyber-MixMechatronics/ICOMECYME was organized by the National Institute of R&D in Mechatronics and Measurement Technique in Bucharest (Romania), on September 7th-8th, 2017 and attracted specialists from all over the world-including North America, South America, and Asia. In addition to presenting research results, ICOMECYME also offered a forum for exchange between R&D experts.
This book proposes a thorough introduction for a varied audience. The reader will master London theory and the Pippard equations, and go on to understand type I and type II superconductors (their thermodynamics, magnetic properties, vortex dynamics, current transport...), Cooper pairs and the results of BCS theory. By studying coherence and flux quantization he or she will be lead to the Josephson effect which, with the SQUID, is a good example of the applications. The reader can make up for any gaps in his knowledge with the use of the appendices, follow the logic behind each model, and assimilate completely the underlying concepts. Approximately 250 illustrations help in developing a thorough understanding. This volume is aimed towards masters and doctoral students, as well as advanced undergraduates, teachers and researchers at all levels coming from a broad range of subjects (chemistry, physics, mechanical and electrical engineering, materials science...). Engineers working in industry will have a useful introduction to other more applied or specialized material. Philippe Mangin is emeritus professor of physics at Mines Nancy Graduate School of Science, Engineering and Management of the University of Lorraine, and researcher at the Jean Lamour Institute in France. He is the former director of both the French neutron scattering facility, Leon Brillouin Laboratory in Orsay, and the Material Physics Laboratory in Nancy, and has taught superconductivity to a broad audience, in particular to engineering students. Remi Kahn is a retired senior research scientist of the French Alternative Energies and Atomic Energy Commission (CEA-Saclay). He worked at the Leon Brillouin Laboratory and was in charge of the experimental areas of INB 101 (the Orphee research reactor). This work responded to the need to bring an accessible account suitable for a wide spectrum of scientists and engineers.
Stan Bray introduces the fascinating world of horology to the complete beginner. This book explains the terminology of the clockmaker and provides general details of clock construction including layout of wheels and escarpments, a number of the latter being described. Making of wheels, pinions, escarpments, plates, pendulums, weights, cases, hands and faces is described. The necessary tools and equipment are described with details of how to make specialized items and choice of most suitable materials for their construction.
This comprehensive guide to fan-out wafer-level packaging (FOWLP) technology compares FOWLP with flip chip and fan-in wafer-level packaging. It presents the current knowledge on these key enabling technologies for FOWLP, and discusses several packaging technologies for future trends. The Taiwan Semiconductor Manufacturing Company (TSMC) employed their InFO (integrated fan-out) technology in A10, the application processor for Apple's iPhone, in 2016, generating great excitement about FOWLP technology throughout the semiconductor packaging community. For many practicing engineers and managers, as well as scientists and researchers, essential details of FOWLP - such as the temporary bonding and de-bonding of the carrier on a reconstituted wafer/panel, epoxy molding compound (EMC) dispensing, compression molding, Cu revealing, RDL fabrication, solder ball mounting, etc. - are not well understood. Intended to help readers learn the basics of problem-solving methods and understand the trade-offs inherent in making system-level decisions quickly, this book serves as a valuable reference guide for all those faced with the challenging problems created by the ever-increasing interest in FOWLP, helps to remove roadblocks, and accelerates the design, materials, process, and manufacturing development of key enabling technologies for FOWLP.
This book discusses physical design and mask synthesis of directed self-assembly lithography (DSAL). It covers the basic background of DSAL technology, physical design optimizations such as placement and redundant via insertion, and DSAL mask synthesis as well as its verification. Directed self-assembly lithography (DSAL) is a highly promising patterning solution in sub-7nm technology.
This book provides a comprehensive introduction to the methods and variety of Kelvin probe force microscopy, including technical details. It also offers an overview of the recent developments and numerous applications, ranging from semiconductor materials, nanostructures and devices to sub-molecular and atomic scale electrostatics. In the last 25 years, Kelvin probe force microscopy has developed from a specialized technique applied by a few scanning probe microscopy experts into a tool used by numerous research and development groups around the globe. This sequel to the editors' previous volume "Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces," presents new and complementary topics. It is intended for a broad readership, from undergraduate students to lab technicians and scanning probe microscopy experts who are new to the field.
This book provides an overview of the noteworthy developments in the field of micromachining, with a specific focus on microinjection systems used for biological micromanipulation. The author also explores the design, development, and fabrication of new mechanical designs for micromachines, with plenty of examples that elucidate their modeling and control. The design and fabrication of a piezoelectric microinjector, constant force microinjector, constant force microgripper, PDVF microforce sensor, and a piezoelectric microsyringe are presented as examples of new technology for microinjection systems. This book is appropriate for both researchers and advanced students in bioengineering.
This book discusses the tribological, rheological and optical properties of liquid-crystal nanomaterials as well as lubricant media. It also describes the formation of liquid-crystal materials and the application of cholesteric liquid-crystal compounds in technical friction units and in human and animal joints. Further, it shows the connection between the tribological and other physical properties of liquid-crystal cholesterol compounds and develops a lubricity conceptual model of cholesteric-nematic, liquid-crystalline nanostructures on the basis of physical and energetic interpretations. This general model is valid for all surfaces and friction pairs, including biopolymers, and could lead to applications of cholesteric liquid-crystalline nanomaterials in different friction units and tribosystems as well as in the treatment of joint diseases.
Finite element analysis is a basic foundational topic that all engineering majors need to understand in order for them to be productive engineering analysts for a variety of industries. This book provides an introductory treatment of finite element analysis with an overview of the various fundamental concepts and applications. It introduces the basic concepts of the finite element method and examples of analysis using systematic methodologies based on ANSYS software. Finite element concepts involving one-dimensional problems are discussed in detail so the reader can thoroughly comprehend the concepts and progressively build upon those problems to aid in analyzing two-dimensional and three-dimensional problems. Moreover, the analysis processes are listed step-by-step for easy implementation, and an overview of two-dimensional and three-dimensional concepts and problems is also provided. In addition, multiphysics problems involving coupled analysis examples are presented to further illustrate the broad applicability of the finite element method for a variety of engineering disciplines. The book is primarily targeted toward undergraduate students majoring in civil, biomedical, mechanical, electrical, and aerospace engineering and any other fields involving aspects of engineering analysis.
The book deals with intelligent control of mobile robots, presenting the state-of-the-art in the field, and introducing new control algorithms developed and tested by the authors. It also discusses the use of artificial intelligent methods like neural networks and neuraldynamic programming, including globalised dual-heuristic dynamic programming, for controlling wheeled robots and robotic manipulators,and compares them to classical control methods.
This book offers detailed insights into spin transfer torque (STT) based devices, circuits and memories. Starting with the basic concepts and device physics, it then addresses advanced STT applications and discusses the outlook for this cutting-edge technology. It also describes the architectures, performance parameters, fabrication, and the prospects of STT based devices. Further, moving from the device to the system perspective it presents a non-volatile computing architecture composed of STT based magneto-resistive and all-spin logic devices and demonstrates that efficient STT based magneto-resistive and all-spin logic devices can turn the dream of instant on/off non-volatile computing into reality.
The aim of this book is to explore the detectable properties of a material to the parameters of bond and non-bond involved and to clarify the interdependence of various properties. This book is composed of four parts; Part I deals with the formation and relaxation dynamics of bond and non-bond during chemisorptions with uncovering of the correlation among the chemical bond, energy band and surface potential barrier (3B) during reactions; Part II is focused on the relaxation of bonds between atoms with fewer neighbors than the ideal in bulk with unraveling of the bond order-length-strength (BOLS) correlation mechanism, which clarifies the nature difference between nanostructures and bulk of the same substance; Part III deals with the relaxation dynamics of bond under heating and compressing with revealing of rules on the temperature-resolved elastic and plastic properties of low-dimensional materials; Part IV is focused on the asymmetric relaxation dynamics of the hydrogen bond (O:H-O) and the anomalous behavior of water and ice under cooling, compressing and clustering. The target audience for this book includes scientists, engineers and practitioners in the area of surface science and nanoscience.
This book shares the knowledge of active and prestigious worldwide researchers and scholars in the field of healthcare monitoring as authors investigate historical developments, summarize latest advancements, and envision future prospects on wearable, attachable, and invisible devices that monitor diverse physiological information. The coverage of the book spans multiple disciplines, from biomechanics, to bioelectricity, biochemistry, biophysics and biomaterials. There is also wide coverage of various physical and chemical quantities such as electricity, pressure, flow, motion, force, temperature, gases, and biomarkers. Each chapter explores the background of a specific monitoring device, as well as its physical and chemical principles and instrumentation, signal processing and data analysis, achieved outcomes and application scenarios, and future research topics. There are chapters on: Electrocardiograms, electroencephalograms, and electromyograms Measurement of flow phenomenon Latest wearable technologies for the quantification of human motion Various forms of wearable thermometers Monitoring of gases and chemical substances produced during metabolism...and more! This book is appropriate and accessible for students and scientists, as well as researchers in biomedical engineering, computer engineers, healthcare entrepreneurs, administrative officers, policy makers, market vendors, and healthcare personnel. It helps to provide us with insights into future endeavors, formulate innovative businesses and services, and will help improve people's health and quality of life.
Introduced into a skeptical American marketplace early in the twentieth century, the wristwatch soon caught the consumer's imagination. It was not long before American watch manufacturers adopted the form and brought their ingenuity and creativity to bear on the style and design of the wristwatch. Fifty years of innovation and beauty follow, and this beautiful book brings you the story in word and picture. Illustrated with over 600 full color pictures, the authors have traced the history of the American wristwatch. Their original research brings life to some of the persons who influenced its development. Design periods are defined and the watches they engendered are amply illustrated giving the reader knowledge that is valuable, both for the appreciation and the collecting of these wristwatches.
This book covers the continually expanding field of metal nanoparticles and clusters, in particular their size-dependent properties and quantum phenomena. The approaches to the organization of atoms that form clusters and nanoparticles have been advancing rapidly in recent times. These advancements are described through a combination of experimental and computational approaches and are covered in detail by the authors. Recent highlights of the various emerging properties and applications ranging from plasmonics to catalysis are showcased.
This book presents a systemic view of nanophenomena in terms of disordered condensed media with characteristics arising at various hierarchical levels from nanoagents/nanoparticles through multiple technological interfaces to the creation of micro- or mesostructures with essential nanodimensional effects. These properties can be seen in various schemes for the functionalization of nanocarbon systems, namely, CNTs, GNRs, GNFs, carbon-based nanoaerogels, nanofoams, and so on, where nonregularities characterize surface nanointeractions and various nanointerconnects, resulting in both predictable and unpredictable effects. Beginning with nanosensing and finishing with other forms of functionalized nanomaterials, these effects will define the prospective qualities of future consumer nanoproducts and nanodevices. This book covers all aspects of nonregular nanosystems arising from the fundamental properties of disordered nanosized media, from electronic structure, surface nanophysics, and allotropic forms of carbon such as graphene and fullerenes including defect characterization, to spintronics and 3D device principles. Nonregular Nanosystems will be of interest to students and specialists in various fields of nanotechnology and nanoscience, experts on surface nanophysics and nanochemistry, as well as managers dealing with marketing of nanoproducts and consumer behavior research.
This book provides an introduction to the biological background of heart functioning and analyzes the various materials and technologies used for the development of microfluidic systems dedicated to cell culture, with an emphasis on cardiac cells. The authors describe the characterization of microfluidic systems for cardiac cell culture and center their discussion of the use of stem cell stimulation based on four different types: electrical, biochemical, physical, and mechanical. This book is appropriate for researchers focused on on-chip technologies and heart studies, students in bioengineering and microengineering courses, and a variety of professionals, such as biotechnologists, biomedical engineers, and clinicians working in the cardiac diseases field. |
![]() ![]() You may like...
Medieval Renaissance Baroque - A Cat's…
David A Levine, Jack Freiberg
Hardcover
R1,301
Discovery Miles 13 010
Horse Care 2.0 - Everything You Need to…
Howexpert, Amanda Wills
Hardcover
R797
Discovery Miles 7 970
Textile Finishing - Basic Concepts and…
D Et Al Gopalakrishnan
Hardcover
R1,308
Discovery Miles 13 080
International Environmental Law, Policy…
Alexander Gillespie
Hardcover
R3,540
Discovery Miles 35 400
Native-Speakerism in Japan - Intergroup…
Stephanie Ann Houghton, Damian J. Rivers
Paperback
R955
Discovery Miles 9 550
A Modern Guide To Labour and the…
Jan Drahokoupil, Kurt Vandaele
Hardcover
R4,502
Discovery Miles 45 020
|