![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture
This book features selected papers presented at the 14th International Conference on Electromechanics and Robotics 'Zavalishin's Readings' - ER(ZR) 2019, held in Kursk, Russia, on April 17-20, 2019. The contributions, written by professionals, researchers and students, cover topics in the field of automatic control systems, electromechanics, electric power engineering and electrical engineering, mechatronics, robotics, automation and vibration technologies. The Zavalishin's Readings conference was established as a tribute to the memory of Dmitry Aleksandrovich Zavalishin (1900-1968) - a Russian scientist, corresponding member of the USSR Academy of Sciences, and founder of the school of valve energy converters based on electric machines and valve converters energy. The first conference was organized by the Institute of Innovative Technologies in Electromechanics and Robotics at the Saint Petersburg State University of Aerospace Instrumentation in 2006. The 2019 conference was held with the XIII International Scientific and Technical Conference "Vibration 2019", and was organized by Saint Petersburg State University of Aerospace Instrumentation (SUAI), Saint Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS) and the Southwest State University (SWSU) in with cooperation Russian Foundation for Basic Research (project No. 19-08-20021).
This book presents high-quality papers from the Seventh Asia International Symposium on Mechatronics (AISM 2019). It discusses the latest technological trends and advances in electromechanical coupling and environmental adaptability design for electronic equipment, sensing and measurement, mechatronics in manufacturing and automation, micro-mechatronics, energy harvesting & storage, robotics, automation and control systems. It includes papers based on original theoretical, practical and experimental simulations, development, applications, measurements, and testing. The applications and solutions discussed here provide excellent reference material for future product developments.
This book explores the application of deep learning techniques within a particularly difficult computational type of computer vision (CV) problem super-resolution (SR). The authors present and discuss ways to apply computational intelligence (CI) methods to SR. The volume also explores the possibility of using different kinds of CV techniques to develop and enhance the tools/processes related to SR. The application areas covered include biomedical engineering, healthcare applications, medicine, histology, and material science. The book will be a valuable reference for anyone concerned with multiple multimodal images, especially professionals working in remote sensing, nanotechnology and immunology at research institutes, healthcare facilities, biotechnology institutions, agribusiness services, veterinary facilities, and universities.
This book gathers the proceedings of the 4th International Conference on Mechanical Engineering and Applied Composite Materials (MEACM), held in Beijing, China on October 24-25, 2020. The conference brought together researchers from several countries and covered all major areas of mechanical engineering and applied composite materials, new applications and current trends. The topics covered include: structure and design, mechanical manufacturing and automation, robotics and mechatronics, mechanical behavior of nanomaterials, nanocomposites, and composite mechanics. Given its scope, the book offers a source of information and inspiration for researchers seeking to improve their work and gather new ideas for future developments.
This book gathers selected papers from the 16th UK Heat Transfer Conference (UKHTC2019), which is organised every two years under the aegis of the UK National Heat Transfer Committee. It is the premier forum in the UK for the local and international heat transfer community to meet, disseminate ongoing work, and discuss the latest advances in the heat transfer field. Given the range of topics discussed, these proceedings offer a valuable asset for engineering researchers and postgraduate students alike.
This book covers the theory, modeling, and implementation of different RF energy harvesting systems. RF energy harvesting is the best choice among the existing renewable energy sources, in terms of availability, cost, size, and integration with other systems. The device used for harvesting RF energy is called rectenna. A rectenna can work at the microwave, millimeter-wave, and terahertz waves. It also has the capability to operate at optical frequencies to be used for 6G and beyond communication systems. This book covers all aspects of wireless power transfer (WPT)/wireless energy harvesting (WEH), basics, theoretical concepts, and advanced developments occurring in the field of energy harvesting. It also covers the design theory for different types of antenna, rectifier, and impedance matching circuits used in RF energy harvesting systems. Different future and present applications, such as charging of vehicles, smart medical health care, self-driven e-vehicles, self-sustainable home automation system, and wireless drones, have also been discussed in detail.
This book presents the basic and fundamental aspects of nanomaterials, its types, and classifications with respect to different factors. It contains methods of preparation and characterization of unique nanostructured materials. Consisting of six chapters, this book appeals to a wide readership from academia and industry professionals and is also useful to undergraduate and graduate students focusing on nanotechnology and nanomaterials, sustainable chemistry, energy conversion and storage, environmental protection, opto-electronics, sensors, and surface and interface science. It also appeals to readers who wish to know about the design of new types of materials with controlled nanostructures.
This book brings together selective and specific chapters on nanoscale carbon and applications, thus making it unique due to its thematic content. It provides access to the contemporary developments in carbon nanomaterial research in electronic applications. Written by professionals with thorough expertise in similar broad area, the book is intended to address multiple aspects of carbon research in a single compiled edition. It targets professors, scientists and researchers belonging to the areas of physics, chemistry, engineering, biology and medicine, and working on theory, experiment and applications of carbon nanomaterials.
This book presents a very useful and readable collection of chapters in nanotechnologies for energy conversion, storage, and utilization, offering new results which are sure to be of interest to researchers, students, and engineers in the field of nanotechnologies and energy. Readers will find energy systems and nanotechnology very useful in many ways such as generation of energy policy, waste management, nanofluid preparation and numerical modelling, energy storage, and many other energy-related areas. It is also useful as reference book for many energy and nanofluid-related courses being taken up by graduate and undergraduate students. In particular, this book provides insights into various forms of renewable energy, such as biogas, solar energy, photovoltaic, solar cells, and solar thermal energy storage. Also, it deals with the CFD simulations of various aspects of nanofluids/hybrid nanofluids.
This book presents select proceedings of the International Conference on Advances in Sustainable Technologies (ICAST 2020), organized by Lovely Professional University, Punjab, India. The topics covered in this book are multidisciplinary in nature. The primary topics included in the book are from the domains of automobile engineering, mechatronics, material science and engineering, aerospace engineering, bio-mechanics, biomedical instrumentation, mathematical techniques, agricultural engineering, nuclear engineering, physics, biodynamic modelling and ergonomics etc. The contents of this book will be beneficial for beginners, researchers, and professionals alike.
This book presents state-of-the-art research in the field of mechatronics and cyber-mixmechatronics, gathering papers from almost all continents. Featuring contributions by research scholars in both government-financed institutions and in the business environment, it offers a clear picture of the innovations emerging in the field. The book is not limited to mechatronics, but also covers all the smart technical sciences, and discusses promising medical applications based on nanotechnologies. As such, it is a valuable resource for students wanting to learn from leading scholars, as well as for researchers in all areas of engineering.
This book covers the recent research on nanomaterials and nanotechnology based on the hybridization of graphene with other nanoparticles. With their simple synthesis, nanoscale dimensions, high aspect ratio, mechanical, electrical and thermal properties, graphene and its hybridized materials have witnessed a great interest, and the chapters in this book cover the spectrum of research from the preparation and synthesis of novel nanocomposites to their potential use in aeronautic, automative, energy and environmental applications. Written by respected researchers from both industry and academia, this book is of interest to researchers and students working on nanomaterials.
This book highlights the overview of Spintronics, including What is Spintronics ?; Why Do We Need Spintronics ?; Comparative merit-demerit of Spintronics and Electronics ; Research Efforts put on Spintronics ; Quantum Mechanics of Spin; Dynamics of magnetic moments : Landau-Lifshitz-Gilbert Equation; Spin-Dependent Band Gap in Ferromagnetic Materials; Functionality of 'Spin' in Spintronics; Different Branches of Spintronics etc. Some important notions on basic elements of Spintronics are discussed here, such as - Spin Polarization, Spin Filter Effect, Spin Generation and Injection, Spin Accumulation, Different kinds of Spin Relaxation Phenomena, Spin Valve, Spin Extraction, Spin Hall Effect, Spin Seebeck Effect, Spin Current Measurement Mechanism, Magnetoresistance and its different kinds etc. Concept of Giant Magnetoresistance (GMR), different types of GMR, qualitative and quantitative explanation of GMR employing Resistor Network Theory are presented here. Tunnelling Magnetoresistance (TMR), Magnetic Junctions, Effect of various parameters on TMR, Measurement of spin relaxation length and time in the spacer layer are covered here. This book highlights the concept of Spin Transfer Torque (STT), STT in Ferromagnetic Layer Structures, STT driven Magnetization Dynamics, STT in Magnetic Multilayer Nanopillar etc. This book also sheds light on Magnetic Domain Wall (MDW) Motion, Ratchet Effect in MDW motion, MDW motion velocity measurements, Current-driven MDW motion, etc. The book deals with the emerging field of spintronics, i.e., Opto-spintronics. Special emphasis is given on ultrafast optical controlling of magnetic states of antiferromagnet, Spin-photon interaction, Faraday Effect, Inverse Faraday Effect and outline of different all-optical spintronic switching. One more promising branch i.e., Terahertz Spintronics is also covered. Principle of operation of spintronic terahertz emitter, choice of materials, terahertz writing of an antiferromagnetic magnetic memory device is discussed. Brief introduction of Semiconductor spintronics is presented that includes dilute magnetic semiconductor, feromagnetic semiconductor, spin polarized semiconductor devices, three terminal spintronic devices, Spin transistor, Spin-LED, and Spin-Laser. This book also emphasizes on several modern spintronics devices that includes GMR Read Head of Modern Hard Disk Drive, MRAM, Position Sensor, Biosensor, Magnetic Field sensor, Three Terminal Magnetic Memory Devices, Spin FET, Race Track Memory and Quantum Computing.
This book presents device design, layout design, FEM analysis, device fabrication, and packaging and testing of MEMS-based piezoelectric vibration energy harvesters. It serves as a complete guide from design, FEM, and fabrication to characterization. Each chapter of this volume illustrates key insight technologies through images. The book showcases different technologies for energy harvesting and the importance of energy harvesting in wireless sensor networks. The design, simulation, and comparison of three types of structures - single beam cantilever structure, cantilever array structure, and guided beam structure have also been reported in one of the chapters. In this volume, an elaborate characterization of two-beam and four-beam fabricated devices has been carried out. This characterization includes structural, material, morphological, topological, dynamic, and electrical characterization of the device. The volume is very concise, easy to understand, and contains colored images to understand the details of each process.
This book presents best selected research papers presented at the Thirteenth International Conference on Applied Mathematics and Mechanics in the Aerospace Industry (AMMAI 2020), held from September 6 to September 13, 2020, at the Alushta Health and Educational Center (The Republic of Crimea). The book is dedicated to solving actual problems of applied mechanics using modern computer technology including smart paradigms. Physical and mathematical models, numerical methods, computational algorithms, and software complexes are discussed, which allow to carry out high-precision mathematical modeling in fluid, gas, and plasma mechanics, in general mechanics, deformable solid mechanics, in strength, destruction and safety of structures, etc. Technologies and software systems that provide effective solutions to the problems at various multi-scale levels are considered. Special attention is paid to the training of highly qualified specialists for the aviation and space industry. The book is recommended for specialists in the field of applied mathematics and mechanics, mathematical modeling, information technologies, and developers of modern applied software systems.
This book introduces readers to interfacial reactions in confinement on stimuli-responsive homopolymer and diblock copolymer films. It also includes investigations concerning the immobilization of (bio)molecules and the fabrication of biomolecular patterns by reactive microcontact printing on these reactive polymer films. In turn, the book takes advantage of the microphase separation of diblock copolymer films to study the fabrication of nanopatterns, which could contribute to the future development of a model system that allows us to area-selectively deposit and address (bio)molecules. Given its scope, the book broadens readers' perspective on the microfabrication of stimuli-responsive polymers.
This book studies electron resonant tunneling in two- and three-dimensional quantum waveguides of variable cross-sections in the time-independent approach. Mathematical models are suggested for the resonant tunneling and develop asymptotic and numerical approaches for investigating the models. Also, schemes are presented for several electronics devices based on the phenomenon of resonant tunneling. Compared to its first edition, this book includes four new chapters, redistributes the content between chapters and modifies the estimates of the remainders in the asymptotics of resonant tunneling characteristics. The book is addressed to mathematicians, physicists, and engineers interested in waveguide theory and its applications in electronics.
This book provides novel approach to the diagnosis of complex technical systems that are widely used in various kinds of transportation, energy, metallurgy, metalworking, fuels, mining, chemical, paper industries, etc. Effective diagnostic systems are necessary for the early detection of errors in mechatronic systems, for the organization of maintenance and for the assessment of the performed service quality. Unfortunately, the practical use of AI in the diagnosis of mechatronic systems is still quite limited and the inability to build effective mechatronic systems leads to significant economic losses and dangers. The main aim of this book is to contribute to knowledge within the topic of diagnostics of mechatronic systems by the analysis of the elements reliability characteristics, using methods, models and algorithms for diagnostics and by studying examples of model diagnostic systems using AI methods based on neural networks, fuzzy inference systems and genetic algorithms.
This book provides a complete overview of a wide range of nanomaterials from their synthesis and characterization to current and potential applications with special focus on the use of such nano-based products as functional agents in biomedical, environmental and industrial applications. It addresses the intrinsic relationship between aspects involving the synthesis of nanocompounds, their bio-physico-chemical properties and their interactions occurring in biomedical, environmental and industrial matrix. This book is of interest to engineers, academics and research scholars working in these fields.
This book presents peer-reviewed articles from the International Conference on Optics and Electro-optics, ICOL-2019, held at Dehradun in India. It brings together leading researchers and professionals in the field of optics/optical engineering/optical materials and provides a platform to present and establish collaborations in this important area, with the theme "Trends in Electro-optics Instrumentation for Strategic Applications". Topics covered but not limited to are Optical Engineering, Optical Thin Films, Optical Materials, IR Sensors, Image Processing & Systems, Photonic Band Gap Materials, Adaptive Optics, Optical Image Processing & Holography, Lasers, Fiber Lasers & its Applications, Diffractive Optics, Innovative packaging of Optical Systems, Nanophotonics Devices and Applications, Optical Interferometry & Metrology, Terahertz, Millimeter Wave & Microwave Photonics, Fiber, Integrated & Nonlinear Optics and Optics and Electro-optics for Strategic Applications.
This book demonstrates the basic and fundamental aspects of nanotechnology and potential application as a photocatalysis in multiple application especially in environment and energy harvesting. This book also contains methods of preparation and characterization of unique nanostructured photocatalysts, and details about their catalytic action. The book consists of seven chapters, including the principles and fundamentals of heterogeneous photocatalysis; the mechanisms and dynamics of surface photocatalysis; research on pure and composites based materials with unique nanostructures; the latest developments and advances in exploiting photocatalyst alternatives to WO3; and photocatalytic materials for applications other than the traditional degradation of pollutants, such as carbon dioxide reduction, water oxidation, a complete spectrum of selective organic transformations and water splitting by photocatalytic reduction. This book will appeal to a wide readership of the academic and industrial researchers and it can also be used in the classroom for undergraduate and graduate students focusing on heterogeneous photocatalysis, sustainable chemistry, energy conversion and storage, nanotechnology, chemical engineering, environmental protection, optoelectronics, sensors, and surface and interface science.
The book highlights the research contributions of the interdigitated (IDT) sensors over a period of two decades in the field of sensing technology. It presents theory, design, and practical realization of the IDT sensors working over wide frequency rage for scientific, industrial, and consumer applications. The IDT sensors have been widely investigated for wide range of sensing applications including agriculture, environmental monitoring, structural health monitoring, health care, food and beverage testing, testing of dielectric material, proximity sensing, microfluidic application, automatic dispensing system etc. Hence, importance of IDT sensors is growing continuously for future applications. As such, it offers a key reference guide on IDT sensors for students, applied physicists, material scientists, engineers, sensors designers and technicians.
This book presents part of the proceedings of the Manufacturing and Materials track of the iM3F 2020 conference held in Malaysia. This collection of articles deliberates on the key challenges and trends related to manufacturing as well as materials engineering and technology in setting the stage for the world in embracing the fourth industrial revolution. It presents recent findings with regards to manufacturing and materials that are pertinent towards the realizations and ultimately the embodiment of Industry 4.0, with contributions from both industry and academia.
This book comprises select papers presented at the Conference on Innovative Product Design and Intelligent Manufacturing System (IPDIMS 2020). The book discusses the latest methods and advanced tools from different areas of design and manufacturing technology. The main topics covered include design methodologies, industry 4.0, smart manufacturing, and advances in robotics among others. The contents of this book are useful for academics as well as professionals working in the areas of industrial design, mechatronics, robotics, and automation.
This book gathers original findings, both theoretical and experimental, related to various cutting-edge topics in the design and modeling of mechatronic systems, including multiphysics problems. It presents peer-reviewed papers from the first installment of the Mechatronics 4.0 workshop, which was jointly organized by the Laboratory of Mechanics, Modeling and Manufacturing (LA2MP), National School of Engineers of Sfax, Tunisia, and the QUARTZ Laboratory, Higher Institute of Mechanics of Paris, SUPMECA, France. The event follows in the tradition of the Workshop on Mechatronic Systems (JSM2014), organized by the same universities, while shifting the focus to the concept of Industry 4.0. As this new type of industry is emerging as the convergence of the virtual world, digital design, and management with real-world products and objects, the chapters gathered here highlight recent work on mechatronics systems that are expected to help shape the industry of tomorrow. Thanks to a healthy balance of theory and practical findings, the book offers a timely snapshot for the research and industrial communities alike, as well as a bridge to facilitate communication and collaboration between the two groups. |
![]() ![]() You may like...
Organometallic Chemistry - Volume 39
Ian J. S. Fairlamb, Jason M. Lynam
Hardcover
R12,230
Discovery Miles 122 300
Slow Scholarship - Medieval Research and…
Catherine E. Karkov
Hardcover
R1,221
Discovery Miles 12 210
|