![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture
This book features selected papers presented at the 14th International Conference on Electromechanics and Robotics 'Zavalishin's Readings' - ER(ZR) 2019, held in Kursk, Russia, on April 17-20, 2019. The contributions, written by professionals, researchers and students, cover topics in the field of automatic control systems, electromechanics, electric power engineering and electrical engineering, mechatronics, robotics, automation and vibration technologies. The Zavalishin's Readings conference was established as a tribute to the memory of Dmitry Aleksandrovich Zavalishin (1900-1968) - a Russian scientist, corresponding member of the USSR Academy of Sciences, and founder of the school of valve energy converters based on electric machines and valve converters energy. The first conference was organized by the Institute of Innovative Technologies in Electromechanics and Robotics at the Saint Petersburg State University of Aerospace Instrumentation in 2006. The 2019 conference was held with the XIII International Scientific and Technical Conference "Vibration 2019", and was organized by Saint Petersburg State University of Aerospace Instrumentation (SUAI), Saint Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS) and the Southwest State University (SWSU) in with cooperation Russian Foundation for Basic Research (project No. 19-08-20021).
This book presents the topology optimization theory for laminar flows with low and moderate Reynolds numbers, based on the density method and level-set method, respectively. The density-method-based theory offers efficient convergence, while the level-set-method-based theory can provide anaccurate mathematical expression of the structural boundary. Unsteady, body-force-driven and two-phase properties are basic characteristics of the laminar flows. The book discusses these properties, which are typical of microfluidics and one of the research hotspots in the area of Micro-Electro-Mechanical Systems (MEMS), providing an efficient inverse design approach for microfluidic structures. To demonstrate the applications of this topology optimization theory in the context of microfluidics, it also investigates inverse design for the micromixer, microvalve and micropump, which are key elements in lab-on-chip devices.
This book was developed with the goal of providing an easily understood text for those users of the scanning electron microscope (SEM) who have little or no background in the area. The SEM is routinely used to study the surface structure and chemistry of a wide range of biological and synthetic materials at the micrometer to nanometer scale. Ease-of-use, typically facile sample preparation, and straightforward image interpretation, combined with high resolution, high depth of field, and the ability to undertake microchemical and crystallographic analysis, has made scanning electron microscopy one of the most powerful and versatile techniques for characterization today. Indeed, the SEM is a vital tool for the characterization of nanostructured materials and the development of nanotechnology. However, its wide use by professionals with diverse technical backgrounds-including life science, materials science, engineering, forensics, mineralogy, etc., and in various sectors of government, industry, and academia-emphasizes the need for an introductory text providing the basics of effective SEM imaging.A Beginners' Guide to Scanning Electron Microscopy explains instrumentation, operation, image interpretation and sample preparation in a wide ranging yet succinct and practical text, treating the essential theory of specimen-beam interaction and image formation in a manner that can be effortlessly comprehended by the novice SEM user. This book provides a concise and accessible introduction to the essentials of SEM includes a large number of illustrations specifically chosen to aid readers' understanding of key concepts highlights recent advances in instrumentation, imaging and sample preparation techniques offers examples drawn from a variety of applications that appeal to professionals from diverse backgrounds.
This book addresses theoretical and experimental methods for exploring microstructured metamaterials, with a special focus on wave dynamics, mechanics, and related physical properties. The authors use various mathematical and physical approaches to examine the mechanical properties inherent to particular types of metamaterials. These include: * Boundary value problems in reduced strain gradient elasticity for composite fiber-reinforced metamaterials * Self-organization of molecules in ferroelectric thin films * Combined models for surface layers of nanostructures * Computer simulation at the micro- and nanoscale * Surface effects with anisotropic properties and imperfect temperature contacts * Inhomogeneous anisotropic metamaterials with uncoupled and coupled surfaces or interfaces * Special interface finite elements and other numerical and analytical methods for composite structures
This book discusses recent advances in hydrogels, including their generation and applications and presents a compendium of fundamental concepts. It highlights the most important hydrogel materials, including physical hydrogels, chemical hydrogels, and nanohydrogels and explores the development of hydrogel-based novel materials that respond to external stimuli, such as temperature, pressure, pH, light, biochemicals or magnetism, which represent a new class of intelligent materials. With their multiple cooperative functions, hydrogel-based materials exhibit different potential applications ranging from biomedical engineering to water purification systems. This book covers key topics including superabsorbent polymer hydrogel; intelligent hydrogels for drug delivery; hydrogels from catechol-conjugated materials; nanomaterials loaded hydrogel; electrospinning of hydrogels; biopolymers-based hydrogels; injectable hydrogels; interpenetrating-polymer-network hydrogels: radiation- and sonochemical synthesis of micro/nano/macroscopic hydrogels; DNA-based hydrogels; and multifunctional applications of hydrogels. It will prove a valuable resource for researchers working in industry and academia alike.
This book presents a short introduction to the historical background to the field, the state of the art and a brief survey of the available instrumentation and the processing techniques used. The following major areas of interest in synthetic, organic and medicinal chemistry are elaborated on: transition-metal catalyzed reactions, organocatalytic transformations, heterocyclic synthesis, and photochemical reactions. Finally, selected applications in industry are also discussed. With its ample presentation of examples from recent literature, this is an essential and reliable source of information for both experienced researchers and postgraduate newcomers to the field.
This book reports on cutting-edge modeling techniques, methodologies and tools used to understand, design and engineer nanoscale communication systems, such as molecular communication systems. Moreover, it includes introductory materials for those who are new to the field. The book's interdisciplinary approach, which merges perspectives in computer science, the biological sciences and nanotechnology, will appeal to graduate students and researchers in these three areas.The book is organized into five parts, the first of which describes the fundamentals of molecular communication, including basic concepts, models and designs. In turn, the second part examines specific types of molecular communication found in biological systems, such as neuronal communication in the brain. The book continues by exploring further types of nanoscale communication, such as fluorescence resonance energy transfer and electromagnetic-based nanoscale communication, in the third part, and by describing nanomaterials and structures for practical applications in the fourth. Lastly, the book presents nanomedical applications such as targeted drug delivery and biomolecular sensing.
This book analyzes several compliant contact force models within the context of multibody dynamics, while also revisiting the main issues associated with fundamental contact mechanics. In particular, it presents various contact force models, from linear to nonlinear, from purely elastic to dissipative, and describes their parameters. Addressing the different numerical methods and algorithms for contact problems in multibody systems, the book describes the gross motion of multibody systems by using a two-dimensional formulation based on the absolute coordinates and employs different contact models to represent contact-impact events. Results for selected planar multibody mechanical systems are presented and utilized to discuss the main assumptions and procedures adopted throughout this work. The material provided here indicates that the prediction of the dynamic behavior of mechanical systems involving contact-impact strongly depends on the choice of contact force model. In short, the book provides a comprehensive resource for the multibody dynamics community and beyond on modeling contact forces and the dynamics of mechanical systems undergoing contact-impact events.
This book provides an introduction to the biological background of heart functioning and analyzes the various materials and technologies used for the development of microfluidic systems dedicated to cell culture, with an emphasis on cardiac cells. The authors describe the characterization of microfluidic systems for cardiac cell culture and center their discussion of the use of stem cell stimulation based on four different types: electrical, biochemical, physical, and mechanical. This book is appropriate for researchers focused on on-chip technologies and heart studies, students in bioengineering and microengineering courses, and a variety of professionals, such as biotechnologists, biomedical engineers, and clinicians working in the cardiac diseases field.
Reliability of Microtechnology discusses the reliability of microtechnology products from the bottom up, beginning with devices and extending to systems. The book's focus includes but is not limited to reliability issues of interconnects, the methodology of reliability concepts and general failure mechanisms. Specific failure modes in solder and conductive adhesives are discussed at great length. Coverage of accelerated testing, component and system level reliability, and reliability design for manufacturability are also described in detail. The book also includes exercises and detailed solutions at the end of each chapter.
This book discusses microstructure-property correlations and explores key microstructure features and how they affect the properties of a material. The authors discuss the effect of manufacturing and processing routes on microstructure and properties. They identify appropriate microstructure and mechanical characterization techniques essential for developing accurate microstructure-property relationships. The techniques include high resolution imaging methods and properties measurements such as hardness, strength, elastic modulus, and fracture toughness. Current and future trends in hard and superhard material design are revealed by the authors, including nanostructured materials, biomimicry, and novel manufacturing technologies.
With this volume, Ezequiel P. M. Leiva and co-authors fill a gap in the available literature, by providing a much-needed, comprehensive review of the relevant literature for electrochemists, materials scientists and energy researchers. For the first time, they present applications of underpotential deposition (UPD) on the nanoscale, such as nanoparticles and nanocavities, as well as for electrocatalysis. They also discuss real surface determinations and layer-by-layer growth of ultrathin films, as well as the very latest modeling approaches to UPD based on nanothermodynamics, statistical mechanics, molecular dynamics and Monte-Carlo simulations.
This volume is dedicated to Professor Okyay Kaynak to commemorate his life time impactful research and scholarly achievements and outstanding services to profession. The 21 invited chapters have been written by leading researchers who, in the past, have had association with Professor Kaynak as either his students and associates or colleagues and collaborators. The focal theme of the volume is the Sliding Modes covering a broad scope of topics from theoretical investigations to their significant applications from Control to Intelligent Mechatronics.
The papers in this volume present and discuss the frontiers in the mechanics of controlled machines and structures. They are based on papers presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines held in Vienna in September 2015. The workshop continues a series of international workshops held in Linz (2008) and St. Petersburg (2010).
This book covers all the steps in order to fabricate a lab-on-a-chip device starting from the idea, the design, simulation, fabrication and final evaluation. Additionally, it includes basic theory on microfluidics essential to understand how fluids behave at such reduced scale. Examples of successful histories of lab-on-a-chip systems that made an impact in fields like biomedicine and life sciences are also provided. This book also: * Provides readers with a unique approach and toolset for lab-on-a-chip development in terms of materials, fabrication techniques, and components * Discusses novel materials and techniques, such as paper-based devices and synthesis of chemical compounds on-chip * Covers the four key aspects of development: basic theory, design, fabrication, and testing * Provides readers with a comprehensive list of the most important journals, blogs, forums, and conferences where microfluidics and lab-on-a-chip news, methods, techniques and challenges are presented and discussed, as well as a list of companies providing design and simulation support, components, and/or developing lab-on-a-chip and microfluidic devices.
This volume contains the Proceedings of the First International Conference of IFToMM Italy (IFIT2016), held at the University of Padova, Vicenza, Italy, on December 1-2, 2016. The book contains contributions on the latest advances on Mechanism and Machine Science. The fifty-nine papers deal with such topics as biomechanical engineering, history of mechanism and machine science, linkages and mechanical controls, multi-body dynamics, reliability, robotics and mechatronics, transportation machinery, tribology, and vibrations.
This book presents a systemic view of nanophenomena in terms of disordered condensed media with characteristics arising at various hierarchical levels from nanoagents/nanoparticles through multiple technological interfaces to the creation of micro- or mesostructures with essential nanodimensional effects. These properties can be seen in various schemes for the functionalization of nanocarbon systems, namely, CNTs, GNRs, GNFs, carbon-based nanoaerogels, nanofoams, and so on, where nonregularities characterize surface nanointeractions and various nanointerconnects, resulting in both predictable and unpredictable effects. Beginning with nanosensing and finishing with other forms of functionalized nanomaterials, these effects will define the prospective qualities of future consumer nanoproducts and nanodevices. This book covers all aspects of nonregular nanosystems arising from the fundamental properties of disordered nanosized media, from electronic structure, surface nanophysics, and allotropic forms of carbon such as graphene and fullerenes including defect characterization, to spintronics and 3D device principles. Nonregular Nanosystems will be of interest to students and specialists in various fields of nanotechnology and nanoscience, experts on surface nanophysics and nanochemistry, as well as managers dealing with marketing of nanoproducts and consumer behavior research.
This book complements available one-make books on domestic synchronous clocks. It is also a history of science book that sets British domestic synchronous clocks, their manufacturers and technology in their social context. Part I covers the historical background, British domestic synchronous clock manufacturers and brands, how synchronous clocks work, domestic synchronous clock cases, practical advice on the servicing of domestic synchronous clocks and analysis of the marketing and reliability of British domestic synchronous clocks. This analysis provides an explanation of the rise and eventual fall of their technology. Part II contains galleries of a selection of British domestic synchronous clocks and of the movements with which they are fitted. There is a front and back view of each clock, together with a brief description. Views of each movement include views with the movement partly dismantled, together with a brief technical description of the movement. This profusely illustrated book is primarily for fellow enthusiasts and is based on an extensive archive of information on domestic synchronous clocks, their movements and their manufacturers. Current electrical regulations mean that professional clockmakers are reluctant to repair synchronous clocks. In fact, provided that they have not been mistreated, synchronous clocks are usually reliable, and quite easy to maintain.
These are the Proceedings of the 6th International Symposium on Multibody Systems and Mechatronics (MUSME 2017) which was held in Florianopolis, Brazil, October 24-28, 2017. Topics addressed include analysis and synthesis of mechanisms; dynamics of multibody systems; design algorithms for mechatronic systems; simulation procedures and results; prototypes and their performance; robots and micromachines; experimental validations; theory of mechatronic simulation; mechatronic systems; and control of mechatronic systems. The MUSME 2017 Symposium was one of the activities of the FEIbIM Commission for Mechatronics and IFToMM technical Committees for Multibody Dynamics, Robotics and Mechatronics.
This volume gathers the latest advances, innovations and applications in the field of cable robots, as presented by leading international researchers and engineers at the 4th International Conference on Cable-Driven Parallel Robots (CableCon 2019), held in Krakow, Poland on June 30-July 4, 2019, as part of the 5th IFToMM World Congress. It covers the theory and applications of cable-driven parallel robots, including their classification, kinematics and singularity analysis, workspace, statics and dynamics, cable modeling and technologies, control and calibration, design methodologies, hardware development, experimental evaluation and prototypes, as well as application reports and new application concepts. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.
This volume of the Lecture Notes in Mobility series contains papers written by speakers at the 22nd International Forum on Advanced Microsystems for Automotive Applications (AMAA 2018) "Smart Systems for Clean, Safe and Shared Road Vehicles" that was held in Berlin, Germany in September 2018. The authors report about recent breakthroughs in electric and electronic components and systems, driver assistance, vehicle automation and electrification as well as data, clouds and machine learning. Furthermore, innovation aspects and impacts of connected and automated driving are covered. The target audience primarily comprises research experts and practitioners in industry and academia, but the book may also be beneficial for graduate students alike.
This book presents original findings on tunable microwave metamaterial structures, and describes the theoretical and practical issues involved in the design of metamaterial devices. Special emphasis is given to tunable elements and their advantages in terms of feeding network simplification. Different biasing schemes and feeding network topologies are presented, together with extensive prototype measurements and simulations. The book describes a novel, unique solution for beam steering and beam forming applications, and thus paves the way for the diffusion of new agile communication system components. At the same time, it provides readers with an outstanding and timely review of wave propagation in periodic structures, tunability of metamaterials and the technological constraints that need to be considered in the design of reconfigurable microwave components.
This book presents a comprehensive review of particle image velocimetry (PIV) and particle tracking velocimetry (PTV) as tools for experimental fluid dynamics (EFD). It shares practical techniques for high-speed photography to accurately analyze multi-phase flows; in particular, it addresses the practical know-how involved in high-speed photography, including e.g. the proper setup for lights and illumination; optical systems to remove perspective distortion; and the density of tracer particles and their fluorescence in the context of PIV and PTV. In this regard, using the correct photographic technique plays a key role in the accurate analysis of the respective flow. Practical applications include bubble and liquid flow dynamics in materials processes agitated by gas injection at high temperatures, mixing phenomena due to jet-induced rotary sloshing, and wettability effects on the efficiency of the processes.
The development of nanomaterials opens the possibility for new materials with outstanding properties compared to classical engineering materials. These materials can find applications in different fields such as medical treatment or structural mechanics. This monograph focuses on two major groups of nanomaterials, i.e.nanoparticels and nanocomposites. Nanopartices, for example in the form of hollow particles, allow for new possibilities in drug delivery. Different aspects of nanoparticles ranging from manufacturing to modeling and simulation are covered. Nanocomposite materials are formed by mixing two or more dissimilar materials at the nanoscale in order to control and develop new and improved structures and properties. The properties of nanocomposites depend not only on the individual components used but also on the morphology and the interfacial characteristics. Nanocomposite coatings and materials are one of the most exciting and fastest growing areas of research and novel properties being continuously developed which are previously unknown in the constituent materials. Thus, the second part of this monograph gives an overview on the latest developments in the area of composites and coatings based on nanomaterials."
This book presents the latest achievements in the theory and practice of SEMS Group interaction by scientists from the Russian Academy of Sciences. It also discusses the development of methods for the design and simulation of SEMS Group interaction based on the principles of safety, flexibility and adaptability in behavior and intelligence and parallelism in information processing, computation and control. Recently, the task has been to ensure the functioning of robots within the framework of collective collaboration, so that they function efficiently, reliably and safely in real time. The topics covered include, but are not limited to, the following: - the planning behavior of the SEMS group;- methods and principles of designing of automatic control systems;- mathematical and computer modeling group interaction;- safety, flexibility and adaptability of the SEMS Group;- information-measuring soft- and hardware. This book is intended for students, scientists and engineers specializing in the field of smart electromechanical systems and robotics. |
You may like...
Biomimetic Lipid Membranes…
Fatma N. Koek, Ahu Arslan Yildiz, …
Hardcover
R2,692
Discovery Miles 26 920
Mechatronics 2013 - Recent Technological…
Tomas Brezina, Ryszard Jablonski
Hardcover
R5,326
Discovery Miles 53 260
Electronic Nose Technologies and…
Yousif Al-Bastaki, Fatema Albalooshi
Hardcover
R5,120
Discovery Miles 51 200
Oyster Perpetual Submariner - The Watch…
Nicholas Foulkes
Hardcover
Advanced Materials - Proceedings of the…
Ivan A. Parinov, Shun-Hsyung Chang, …
Hardcover
R5,278
Discovery Miles 52 780
|