![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture
Covering the complete design cycle of nanopositioning systems, this is the first comprehensive text on the topic. The book first introduces concepts associated with nanopositioning stages and outlines their application in such tasks as scanning probe microscopy, nanofabrication, data storage, cell surgery and precision optics. Piezoelectric transducers, employed ubiquitously in nanopositioning applications are then discussed in detail including practical considerations and constraints on transducer response. The reader is then given an overview of the types of nanopositioner before the text turns to the in-depth coverage of mechanical design including flexures, materials, manufacturing techniques, and electronics. This process is illustrated by the example of a high-speed serial-kinematic nanopositioner. Position sensors are then catalogued and described and the text then focuses on control. Several forms of control are treated: shunt control, feedback control, force feedback control and feedforward control (including an appreciation of iterative learning control). Performance issues are given importance as are problems limiting that performance such as hysteresis and noise which arise in the treatment of control and are then given chapter-length attention in their own right. The reader also learns about cost functions and other issues involved in command shaping, charge drives and electrical considerations. All concepts are demonstrated experimentally including by direct application to atomic force microscope imaging. Design, Modeling and Control of Nanopositioning Systems will be of interest to researchers in mechatronics generally and in control applied to atomic force microscopy and other nanopositioning applications. Microscope developers and mechanical designers of nanopositioning devices will find the text essential reading.
This book provides a guide to Static Random Access Memory (SRAM) bitcell design and analysis to meet the nano-regime challenges for CMOS devices and emerging devices, such as Tunnel FETs. Since process variability is an ongoing challenge in large memory arrays, this book highlights the most popular SRAM bitcell topologies (benchmark circuits) that mitigate variability, along with exhaustive analysis. Experimental simulation setups are also included, which cover nano-regime challenges such as process variation, leakage and NBTI for SRAM design and analysis. Emphasis is placed throughout the book on the various trade-offs for achieving a best SRAM bitcell design.Provides a complete and concise introduction to SRAM bitcell design and analysis; Offers techniques to face nano-regime challenges such as process variation, leakage and NBTI for SRAM design and analysis;Includes simulation set-ups for extracting different design metrics for CMOS technology and emerging devices;Emphasizes different trade-offs for achieving the best possible SRAM bitcell design.
This book reviews the recent development of fabrication methods and various properties of lotus-type porous metals and their applications. The nucleation and growth mechanism of the directional pores in metals are discussed in comparison with a model experiment of carbon dioxide pores in ice. Three casting techniques are introduced to produce not only metals and alloys but also intermetallic compounds, semiconductors, and ceramics: mold casting, continuous zone melting, and continuous casting. The latter has merits for mass production of lotus metals to control porosity, pore size and pore direction. Furthermore, anisotropic behavior of elastic, mechanical properties, thermal and electrical conductivity, magnetic properties, and biocompatibility are introduced as peculiar features of lotus metals.
Wireless sensor networks have recently received a high level of attention due to their wide applications in military and civilian operations. Security for Wireless Sensor Networks discusses fundamental security issues in wireless sensor networks, techniques for the protection of such networks, as well results from recent studies in wireless sensor network security. This volume assists both professionals and students to understand background knowledge in wireless sensor network security and prepare them for producing research in this domain. Security for Wireless Sensor Networks is designed for a professional audience composed of researchers and practitioners in industry. This book is also suitable as a secondary text for graduate-level students in computer science.
This book focusses on Industry 4.0 which is one of the most challenging trends for all categories of manufacturing enterprises. In this book, variety of mechatronic solutions are discussed to develop a manufacturing control system for small and medium-sized enterprises as they impose to improve their capabilities by integration into Industry 4.0 standards.
Micro Metal Forming, i. e. forming of parts and features with dimensions below 1 mm, is a young area of research in the wide field of metal forming technologies, expanding the limits for applying metal forming towards micro technology. The essential challenges arise from the reduced geometrical size and the increased lot size. In order to enable potential users to apply micro metal forming in production, information about the following topics are given: tribological behavior: friction between tool and work piece as well as tool wearmechanical behavior: strength and formability of the work piece material, durability of the work pieces size effects: basic description of effects occurring due to the fact, that the quantitative relation between different features changes with decreasing size process windows and limits for forming processestool making methodsnumerical modeling of processes and process chainsquality assurance and metrology All topics are discussed with respect to the questions relevant to micro metal forming. The description comprises information from actual research and the young history of this technology branch to be used by students, scientists and engineers in industry who already have a background in metal forming and like to expand their knowledge towards miniaturization. tribological behavior: friction between tool and work piece as well as tool wearmechanical behavior: strength and formability of the work piece material, durability of the work pieces size effects: basic description of effects occurring due to the fact, that the quantitative relation between different features changes with decreasing size process windows and limits for forming processestool making methodsnumerical modeling of processes and process chainsquality assurance and metrology All topics are discussed with respect to the questions relevant to micro metal forming. The description comprises information from actual research and the young history of this technology branch to be used by students, scientists and engineers in industry who already have a background in metal forming and like to expand their knowledge towards miniaturization.
Design of Pulse Oximeters describes the hardware and software needed to make a pulse oximeter, and includes the equations, methods, and software required for them to function effectively. The book begins with a brief description of how oxygen is delivered to the tissue, historical methods for measuring oxygenation, and the invention of the pulse oximeter in the early 1980s. Subsequent chapters explain oxygen saturation display and how to use an LED, provide a survey of light sensors, and review probes and cables. The book closes with an assessment of techniques that may be used to analyze pulse oximeter performance and a brief overview of pulse oximetry applications. The book contains useful worked examples, several worked equations, flow charts, and examples of algorithms used to calculate oxygen saturation. It also includes a glossary of terms, instructional objectives by chapter, and references to further reading.
"Nanoscale Applications for Information and Energy Systems "presents nanotechnology fundamentals and applications in the key research areas of information technology (electronics and photonics) and alternative (solar) energy: plasmonics, photovoltaics, transparent conducting electrodes, silicon electroplating, and resistive switching. The three major technology areas electronics, photonics, and solar energy are linked on the basis of similar applications of nanostructured materials in research and development. By bridging the materials physics and chemistry at the atomic scale with device and system design, integration, and performance requirements, tutorial chapters from worldwide leaders in the field provide a coherent picture of theoretical and experimental research efforts and technology development in these highly interdisciplinary areas."
This book summarizes recent research and development in the field of nanostructured ceramics and their composites. It presents selected examples of ceramic materials with special electronic, catalytic and optical properties and exceptional mechanical characteristics. A special focus is on sol-gel based and organic-inorganic hybrid nanoceramic materials. The book highlights examples for preparation techniques including scale-up, properties of smart ceramic composites, and applications including e.g. waste water treatment, heavy metal removal, sensors, electronic devices and fuel cells. Recent challenges are addressed and potential solutions are suggested for these. This book hence addresses chemists, materials scientists, and engineers, working with nanoceramic materials and on their applications.
This book focuses on the modeling and analysis of heat and fluid flow in microchannels and micro-systems, compiling a number of analytical and hybrid numerical-analytical solutions for models that account for the relevant micro-scale effects, with the corresponding experimental analysis validation when applicable. The volume stands as the only available compilation of easy to use analytically-based solutions for micro-scale heat and fluid flow problems, that systematically incorporates the most relevant micro-scale effects into the mathematical models, followed by their physical interpretation on the micro-system behavior.
SHORTLISTED FOR THE ROYAL SOCIETY SCIENCE BOOK PRIZE 2018 Bestselling author Simon Winchester writes a magnificent history of the pioneering engineers who developed precision machinery to allow us to see as far as the moon and as close as the Higgs boson. Precision is the key to everything. It is an integral, unchallenged and essential component of our modern social, mercantile, scientific, mechanical and intellectual landscapes. The items we value in our daily lives – a camera, phone, computer, bicycle, car, a dishwasher perhaps – all sport components that fit together with precision and operate with near perfection. We also assume that the more precise a device the better it is. And yet whilst we live lives peppered and larded with precision, we are not, when we come to think about it, entirely sure what precision is, or what it means. How and when did it begin to build the modern world? Simon Winchester seeks to answer these questions through stories of precision’s pioneers. Exactly takes us back to the origins of the Industrial Age, to Britain where he introduces the scientific minds that helped usher in modern production: John ‘Iron-Mad’ Wilkinson, Henry Maudslay, Joseph Bramah, Jesse Ramsden, and Joseph Whitworth. Thomas Jefferson exported their discoveries to the United States as manufacturing developed in the early twentieth century, with Britain’s Henry Royce developing the Rolls Royce and Henry Ford mass producing cars, Hattori’s Seiko and Leica lenses, to today’s cutting-edge developments from Europe, Asia and North America. As he introduces the minds and methods that have changed the modern world, Winchester explores fundamental questions. Why is precision important? What are the different tools we use to measure it? Who has invented and perfected it? Has the pursuit of the ultra-precise in so many facets of human life blinded us to other things of equal value, such as an appreciation for the age-old traditions of craftsmanship, art, and high culture? Are we missing something that reflects the world as it is, rather than the world as we think we would wish it to be? And can the precise and the natural co-exist in society?
This book presents a complete state of the art for different types of nanomaterial, their environmental fate, and their use in textile waste remediation. Nano-engineered materials including nanoparticles, nanofibers, nanotubes have been used extensively for a variety of applications. Environmental concerns have been noted mainly due to the discharge of textile waste. Nanotechnology is fast growing on research and bringing sustainable solution in minimizing the waste. This also minimizes the risk of exposure and health hazards. With the development of industry, environmental pollution and energy shortage have raised awareness of a potential global crisis. So, it is urgent to develop a simple and effective method to address these current issues. Nano-engineered materials can be better solution in finding solution of environmental sustainability more specific to the textile waste remediation. Nano-engineered materials have emerged as pioneering photocatalysts and account for most of the current research in this area. This can provide large surface areas, diverse morphologies, abundant surface states, and easy device modeling, all of which are properties beneficial to photodegradation. Furthermore, the stability and cost of nano-engineered materials are critical factors. Therefore, it is a challenge of great importance to identify and design nano-engineered materials that are efficient, stable, and abundant for the remediation of textile waste.
Pressurized equipment is used for many industrial processes, for example in petrochemical plants, off-m,shore oil rigs, gas storage and control systems. In each case the pressure vessels must be carefully designed to cope with the operating temperatures and pressures. With the increasing service demands, quality requirements and safety legislation it has become vitally important for engineers to understand the fundamental principles underlying the methodologies of the design standards codes. This text provides background information on pressure vessel design for a wide range of pressurized components. It is written by engineers, the majority of whom serve on the British Standard Pressure Vessel Design Committee. The book derives from a series of courses and seminars run regularly in the UK and overseas by the University of Strathclyde in conjunction with the Institution of Mechanical Engineers since 1986. The scope and coverage has been developed over an extended period to meet the needs of those involved with pressure vessels as designers, fabricators, users, plant operators, inspection bodies, researchers and senior students.
This book introduces the various aspects of the emerging field of carbon dots. Their structural and physico-chemical properties as well as their current and future potential applications are covered. A special chapter on graphene quantum dots is provided. The reader will also find different synthesis routes for carbon quantum dots.
This book gives a comprehensive overview of recent advancements in both theory and practical implementation of plasmonic probes. Encompassing multiple disciplines, the field of plasmonics provides a versatile and flexible platform for nanoscale sensing and imaging. Despite being a relatively young field, plasmonic probes have come a long way, with applications in chemical, biological, civil, and architectural fields as well as enabling many analytical schemes such as immunoassay, biomarkers, environmental indexing, and water quality sensing, to name but a few. The objective of the book is to present in-depth analysis of the theory and applications of novel probes based on plasmonics, with a broad selection of specially-invited chapters on the development, fabrication, functionalization, and implementation of plasmonic probes as well as their integration with current technologies and future outlook. This book is designed to cater to the needs of novice, seasoned researchers and practitioners in academia and industry, as well as medical and environmental fields.
CMOS Processors and Memories addresses the-state-of-the-art in integrated circuit design in the context of emerging computing systems. New design opportunities in memories and processor are discussed. Emerging materials that can take system performance beyond standard CMOS, like carbon nanotubes, graphene, ferroelectrics and tunnel junctions are explored. CMOS Processors and Memories is divided into two parts: processors and memories. In the first part we start with high performance, low power processor design, followed by a chapter on multi-core processing. They both represent state-of-the-art concepts in current computing industry. The third chapter deals with asynchronous design that still carries lots of promise for future computing needs. At the end we present a "hardware design space exploration" methodology for implementing and analyzing the hardware for the Bayesian inference framework. This particular methodology involves: analyzing the computational cost and exploring candidate hardware components, proposing various custom architectures using both traditional CMOS and hybrid nanotechnology CMOL. The first part concludes with hybrid CMOS-Nano architectures. The second, memory part covers state-of-the-art SRAM, DRAM, and flash memories as well as emerging device concepts. Semiconductor memory is a good example of the full custom design that applies various analog and logic circuits to utilize the memory cell's device physics. Critical physical effects that include tunneling, hot electron injection, charge trapping (Flash memory) are discussed in detail. Emerging memories like FRAM, PRAM and ReRAM that depend on magnetization, electron spin alignment, ferroelectric effect, built-in potential well, quantum effects, and thermal melting are also described. CMOS Processors and Memories is a must for anyone serious about circuit design for future computing technologies. The book is written by top notch international experts in industry and academia. It can be used in graduate course curriculum.
This book reviews the work in the field of nanoadsorbents derived from natural polymers, with a special emphasis on materials finding application in water remediation. It includes natural materials both with an organic or an inorganic skeleton, from which the nanomaterials can be made. Those nanomaterials can therefore be used to reinforce other matrices and in their pristine form have an extraordinary adsorption efficiency. Being of natural or biological origin, the materials described in this book distinguish themselves as eco-friendly and non-toxic. The book describes how these benefits of the described materials can be combined and exploited. It will thus appeal to chemists, nanotechnologists, environmental engineers and generally all scientist working in the field of water pollution and remediation as an inspiration for the innovation toward new technologies.
This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 2nd International Summer School "Nanotechnology: From Fundamental Research to Innovations" and International Research and Practice Conference "Nanotechnology and Nanomaterials", NANO-2013, which were held in Bukovel, Ukraine on August 25-September 1, 2013. These events took place within the framework of the European Commission FP7 project Nanotwinning, and were organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications.
This book highlights the proceedings of the International Conference on Atomic, Molecular, Optical and Nano-Physics with Applications (CAMNP 2019), organized by the Department of Applied Physics, Delhi Technological University, New Delhi, India. It presents experimental and theoretical studies of atoms, ions, molecules and nanostructures both at the fundamental level and on the application side using advanced technology. It highlights how modern tools of high-field and ultra-fast physics are no longer merely used to observe nature but can be used to reshape and redirect atoms, molecules, particles or radiation. It brings together leading researchers and professionals on the field to present and discuss the latest finding in the following areas, but not limited to: Atomic and Molecular Structure, Collision Processes, Data Production and Applications Spectroscopy of Solar and Stellar Plasma Intense Field, Short Pulse Laser and Atto-Second Physics Laser Technology, Quantum Optics and applications Bose Einstein condensation Nanomaterials and Nanoscience Nanobiotechnolgy and Nanophotonics Nano and Micro-Electronics Computational Condensed Matter Physics
Innovation, exclusivity, and elegance define Patek Philippe, a family-owned company with a single and passionate calling: to perfect the watch. These lavishly-illustrated books present some of the most important timepieces from the more than 3,000 watches exhibited at the Patek Philippe Museum in Geneva. These precious timepieces have been passionately assembled over more than 40 years by Philippe Stern, Honorary President of the company, and include some of the most valuable pieces in watchmaking history. From the collection of historic watches featuring the first portable timepieces dating back to the 16th century to innovative milestones in Patek Philippe's portfolio since its founding in 1839, each watch is reproduced with such beauty and precision, you can almost hear it ticking. With expert curatorial insight and context from Peter Friess, Director of the Patek Philippe museum, these intricate mechanisms are not only presented for themselves; they also offer a unique perspective into the cultural history of the last 500 years. True to the trust and excellence of the Patek Philippe brand, the presentation, design, and content of these sumptuous publications meet the highest professional standards. They are the perfect books for the "perfect watch."
Low Power Analog CMOS for Cardiac Pacemakers proposes new
techniques for the reduction of power consumption in analog
integrated circuits. Our main example is the pacemaker sense
channel, which is representative of a broader class of biomedical
circuits aimed at qualitatively detecting biological signals.
This book reflects the current status of theoretical and experimental research of graphene based nanostructures, in particular quantum dots, at a level accessible to young researchers, graduate students, experimentalists and theorists. It presents the current state of research of graphene quantum dots, a single or few monolayer thick islands of graphene. It introduces the reader to the electronic and optical properties of graphite, intercalated graphite and graphene, including Dirac fermions, Berry's phase associated with sublattices and valley degeneracy, covers single particle properties of graphene quantum dots, electron-electron interaction, magnetic properties and optical properties of gated graphene nanostructures. The electronic, optical and magnetic properties of the graphene quantum dots as a function of size, shape, type of edge and carrier density are considered. Special attention is paid to the understanding of edges and the emergence of edge states for zigzag edges. Atomistic tight binding and effective mass approaches to single particle calculations are performed. Furthermore, the theoretical and numerical treatment of electron-electron interactions at the mean-field, HF, DFT and configuration-interaction level is described in detail.
This book highlights a comprehensive introduction of graphene and graphene-based two-dimensional nanomaterials, covering topics from their atomic structures, electronic band structures, and fundamental properties to technological applications. The book provides fundamental physics knowledge covering quantum mechanics, the theory of relativity, solid-state physics, and topology geometry necessary to understand electronic band structure of graphene. Other topics including microscopy techniques and preparation methods of graphene are also presented. Adopting an easy-to-read style, the book is a valuable resource for researchers in physics, chemistry, materials science, and engineers who are interested in the field of graphene-based nanomaterials.
For the efficient utilization of energy resources and the minimization of environmental damage, thermoelectric materials can play an important role by converting waste heat into electricity directly. Nanostructured thermoelectric materials have received much attention recently due to the potential for enhanced properties associated with size effects and quantum confinement. "Nanoscale Thermoelectrics" describes the theory underlying these phenomena, as well as various thermoelectric materials and nanostructures such as carbon nanotubes, SiGe nanowires, and graphene nanoribbons. Chapters written by leading scientists throughout the world are intended to create a fundamental bridge between thermoelectrics and nanotechnology, and to stimulate readers' interest in developing new types of thermoelectric materials and devices for power generation and other applications. "Nanoscale Thermoelectrics" is both a comprehensive introduction to the field and a guide to further research, and can be recommended for Physics, Electrical Engineering, and Materials Science departments.
This book highlights current advanced developments in bioepoxy and bioepoxy/clay nanocomposites and an optimisation of material formulation and processing parameters on fabrication of bioepoxy/clay nanocomposites in order to achieve the highest mechanical properties in relation to their morphological structures, thermal properties, as well as biodegradability and water absorption, which is based on the use of Taguchi design of experiments with the consideration of technical and economical point of view. It also elaborates holistic theoretical modelling of tensile properties of such bionanocomposites with respect to the effect of contents of nanoclay fillers and epoxydised soybean oil (ESO). |
You may like...
United States Circuit Court of Appeals…
United States Circuit Court of Appeals
Paperback
R779
Discovery Miles 7 790
Noncontact Atomic Force Microscopy…
Seizo Morita, Franz J. Giessibl, …
Hardcover
R5,898
Discovery Miles 58 980
The Joy of Finite Mathematics - The…
Chris P Tsokos, Rebecca D Wooten
Paperback
R2,870
Discovery Miles 28 700
United States Circuit Court of Appeals…
United States Court of Appeals
Paperback
R919
Discovery Miles 9 190
Holocaust Archaeologies - Approaches and…
Caroline Sturdy Colls
Hardcover
R3,280
Discovery Miles 32 800
Report of Proceedings of the ... Annual…
American Railway Master Mec Association
Paperback
R853
Discovery Miles 8 530
|