![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture
This book provides an up-to-date review of nanometer-scale magnetism and focuses on the investigation of the basic properties of magnetic nanostructures. It describes a wide range of physical aspects together with theoretical and experimental methods. A broad overview of the latest developments in this emerging and fascinating field of nanostructured materials is given with emphasis on the practical understanding and operation of submicron devices based on nanostructured magnetic materials.
A successful cyber-physical system, a complex interweaving of hardware and software with some part of the physical environment, depends on proper identification of the, often pre-existing, physical element. A bespoke "cyber" part of the system may then be designed from scratch. Optimal Mobile Sensing and Actuation Strategies in Cyber-physical Systems focuses on distributed-parameter systems the dynamics of which can be modelled with partial differential equations. These are very challenging to observe, their states and inputs being distributed throughout a spatial domain. Consequently, systematic approaches to the optimization of sensor location have to be devised for parameter estimation. The text begins by reviewing the field of cyber-physical systems and introducing background notions of distributed parameter systems and optimal observation theory. New research problems are then defined within this framework. Two important problems considered are optimal mobile sensor trajectory planning and the accuracy effects and allocation of remote sensors. These are followed up with a solution to the problem of optimal robust estimation. Actuation policies are then introduced into the framework with the purpose of improving estimation and optimizing the trajectories of both sensors and actuators simultaneously. The large number of illustrations within the text will assist the reader to visualize the application of the methods proposed. A group of similar examples are used throughout the book to help the reader assimilate the material more easily. The monograph concentrates on the use of methods for which a cyber-physical-systems infrastructure is required. The methods are computationally heavy and require mobile sensors and actuators with communications abilities. Application examples cover fields from environmental science to national security so that readers are encouraged to link the ideas of cyber-physical systems with their own research.
This thesis describes a new approach for cell analysis by the rapid developing microfluidic technology. The nominee has made great contributions to develop a new analysis platform which combined microfluidic devices with mass spectrometry to determine the trace compounds secreted by cells. Based on this analysis platform, she studied the specific cell secreting behaviors under controlled microenvironment, of which the secretion compounds were qualified and semi-quantified by mass spectrometry. A novel cell sorting device integrated homogenous porous PDMS membrane was invented to classify cells from real samples based on the size difference. The nominee further studied the signal transmission between different cells, and the signal chemicals were qualitative and quantitative monitored by the analysis platform. This indicates the potential significant application of the new cell analysis platform in medicine screening and early diagnosis.
This carefully edited book introduces the latest achievements of the scientists of the Russian Academy of Sciences in the field of theory and practice of Smart Electromechanical Systems (SEMS). The book also focuses on methods of designing and modeling of SEMS based on the principles of adaptability, intelligence, biomorphism of parallel kinematics and parallelism in information processing and control computation. The book chapters are dedicated to the following points of interest: - methods of design of SEMS modules and intelligent robots based on them; - synthesis of neural systems of automatic control over SEMS modules; - mathematical and computer modeling of SEMS modules and Cyber Physical Systems based on them; - vitality control and reliability analysis based on logic-and-probabilistic and logic-and-linguistic forecasting; - methods of optimization of SEMS control systems based on mathematical programming methods in ordinal scale and generalized mathematical programming; - information-measuring software of SEMS modules and CPS based on them. This book is intended for students, scientists and engineers specializing in the field of SEMS and robotics, and includes many scientific domains such as kinematics, dynamics, control theory.
Soft sensors are inferential estimators, drawing conclusions from process observations when hardware sensors are unavailable or unsuitable; they have an important auxiliary role in sensor validation when performance declines through senescence or fault accumulation. The non-linear behaviour exhibited by many industrial processes can be usefully modelled with the techniques of computational intelligence: neural networks; fuzzy systems and nonlinear partial least squares. Soft Sensors for Monitoring and Control of Industrial Processes underlines the real usefulness of each approach and the sensitivity of the individual steps in soft-sensor design to the choice of one or the other. Design paths are suggested and readers shown how to evaluate the effects of their choices. All the case studies reported, resulting from collaborations between the authors and a number of industrial partners, raised challenging soft-sensor-design problems. The applications of soft sensors presented in this volume are designed to cope with the whole range from measuring system backup and what-if analysis through real-time prediction for plant control to sensor diagnosis and validation. Some of the soft sensors developed here are implemented on-line at industrial plants. Features:
This monograph guides interested readers a"researchers, graduate students and industrial process technologists a" through the design of their own soft sensors. It is self-contained with full references and appraisal of existing literature and data sets for some of the case studies can be downloaded from springer.com.
This book introduces physical effects and fundamentals of piezoelectric sensors and actuators. It gives a comprehensive overview of piezoelectric materials such as quartz crystals and polycrystalline ceramic materials. Different modeling approaches and methods to precisely predict the behavior of piezoelectric devices are described. Furthermore, a simulation-based approach is detailed which enables the reliable characterization of sensor and actuator materials. One focus of the book lies on piezoelectric ultrasonic transducers. An optical approach is presented that allows the quantitative determination of the resulting sound fields. The book also deals with various applications of piezoelectric sensors and actuators. In particular, the studied application areas are * process measurement technology, * ultrasonic imaging, * piezoelectric positioning systems and * piezoelectric motors. The book addresses students, academic as well as industrial reseachers and development engineers who are concerned with piezoelectric sensors and actuators.
This book addresses reliability and energy efficiency of on-chip networks using cooperative error control. It describes an efficient way to construct an adaptive error control codec capable of tracking noise conditions and adjusting the error correction strength at runtime. Methods are also presented to tackle joint transient and permanent error correction, exploiting the redundant resources already available on-chip. A parallel and flexible network simulator is also introduced, which facilitates examining the impact of various error control methods on network-on-chip performance.
This book presents and introduces ellipsometry in nanoscience and nanotechnology making a bridge between the classical and nanoscale optical behaviour of materials. It delineates the role of the non-destructive and non-invasive optical diagnostics of ellipsometry in improving science and technology of nanomaterials and related processes by illustrating its exploitation, ranging from fundamental studies of the physics and chemistry of nanostructures to the ultimate goal of turnkey manufacturing control. This book is written for a broad readership: materials scientists, researchers, engineers, as well as students and nanotechnology operators who want to deepen their knowledge about both basics and applications of ellipsometry to nanoscale phenomena. It starts as a general introduction for people curious to enter the fields of ellipsometry and polarimetry applied to nanomaterials and progresses to articles by experts on specific fields that span from plasmonics, optics, to semiconductors and flexible electronics. The core belief reflected in this book is that ellipsometry applied at the nanoscale offers new ways of addressing many current needs. The book also explores forward-looking potential applications.
Optical sensor technology has reached a level of technological maturity that makes it a promising candidate for applications to specific sensing challenges including those in environmental monitoring, in process control (particularly in biotechnology), in clinical assays where low-cost one-way sensing elements are needed, and in other areas. Optical sensors can be used as fiber optic microsensors, as planar coatings in bioreactors, in microtiterplate format, in disposable single-shot devices, and as planar membranes that can be imaged using sensitive cameras. The spectral range extends from the UV to the infrared, and from absorption to emission and to surface plasmon resonance. Hence, a variety of schemes are conceivable, and this first volume of the Springer Series on Chemical Sensors and Biosensors gives a state-of-the-art description of this highly sophisticated but very promising technology.
This book reveals why carbon is playing such an increasingly prominent role as a sensing material. The various steps that transform a raw material in a sensing device are thoroughly presented and critically discussed.The authors deal with all aspects of carbon-based sensors, starting from the various hybridization and allotropes of carbon, with specific focus on micro and nano sized carbons (e.g., carbon nanotubes, graphene) and their growth processes. The discussion then moves to the role of functionalization and the different routes to achieve it. Finally, a number of sensing applications in various fields are presented, highlighting the connection with the basic properties of the various carbon allotropes. Readers will benefit from this book s bottom-up approach, which starts from the local bonding in carbon solids and ends with sensing applications, linking the local hybridization of carbon atoms and its modification by functionalization to specific device performance. This book is a must-have in the library of any scientist involved in carbon based sensing application."
This book considers the design and development of nanoelectronic computing circuits, systems and architectures focusing particularly on memristors, which represent one of today's latest technology breakthroughs in nanoelectronics. The book studies, explores, and addresses the related challenges and proposes solutions for the smooth transition from conventional circuit technologies to emerging computing memristive nanotechnologies. Its content spans from fundamental device modeling to emerging storage system architectures and novel circuit design methodologies, targeting advanced non-conventional analog/digital massively parallel computational structures. Several new results on memristor modeling, memristive interconnections, logic circuit design, memory circuit architectures, computer arithmetic systems, simulation software tools, and applications of memristors in computing are presented. High-density memristive data storage combined with memristive circuit-design paradigms and computational tools applied to solve NP-hard artificial intelligence problems, as well as memristive arithmetic-logic units, certainly pave the way for a very promising memristive era in future electronic systems. Furthermore, these graph-based NP-hard problems are solved on memristive networks, and coupled with Cellular Automata (CA)-inspired computational schemes that enable computation within memory. All chapters are written in an accessible manner and are lavishly illustrated. The book constitutes an informative cornerstone for young scientists and a comprehensive reference to the experienced reader, hoping to stimulate further research on memristive devices, circuits, and systems.
Longcase clocks were invidually hand-made during the golden age of change that took place between the late seventeenth and mid-nineteenth centuries. Longcase clocks with their seventeenth century clock-making technology were innovative and incorporated an accurate pendulum clock within an attractive piece of domestic furnishing. This invaluable book is essential reading for all those who own and collect longcase clocks as well as clock repairers, horologists and conservationists.
Micromanufacturing and Nanotechnology is an emerging technological infrastructure and process that involves manufacturing of products and systems at the micro and nano scale levels. Development of micro and nano scale products and systems are underway due to the reason that they are faster, accurate and less expensive. Moreover, the basic functional units of such systems possesses remarkable mechanical, electronic and chemical properties compared to the macro-scale counterparts. Since this infrastructure has already become the prefered choice for the design and development of next generation products and systems it is now necessary to disseminate the conceptual and practical phenomenological know-how in a broader context. This book incorporates a selection of research and development papers. Its scope is the history and background, underlynig design methodology, application domains and recent developments.
To control mechanical processes one needs to obtain information about the state of the system, to process the information, and then to act on the results. Originally, the simplest controls were purely mechanical feedback systems; more complex systems required human intervention. At present, most controls are provided by purely electromechanical systems, but there are also many situations in which one needs sophisticated measurements for later analysis.
This book presents a comprehensive description of phonons and their interactions in systems with different dimensions and length scales. Internationally-recognized leaders describe theories and measurements of phonon interactions in relation to the design of materials with exotic properties such as metamaterials, nano-mechanical systems, next-generation electronic, photonic, and acoustic devices, energy harvesting, optical information storage, and applications of phonon lasers in a variety of fields. The emergence of techniques for control of semiconductor properties and geometry has enabled engineers to design structures in which functionality is derived from controlling electron behavior. As manufacturing techniques have greatly expanded the list of available materials and the range of attainable length scales, similar opportunities now exist for designing devices whose functionality is derived from controlling phonon behavior. However, progress in this area is hampered by gaps in our knowledge of phonon transport across and along arbitrary interfaces, the scattering of phonons with crystal defects, interface roughness and mass-mixing, delocalized electrons/collective electronic excitations, and solid acoustic vibrations when these occur in structures with small physical dimensions. This book providesa comprehensive description of phonons and their interactions in systems with different dimensions and length scales. Theories and measurements of phonon interactions are described in relation to the design of materials with exotic properties such as metamaterials, nano-mechanical systems, next-generation electronic, photonic, and acoustic devices, energy harvesting, optical information storage, and applications of phonon lasers in a variety of fields."
The aim of this book is to present foundational research on the nano-crystallization, high-temperature modification, micro-structure evolution and plastic deformation induced by laser shock processing. In this regard, the focus is on heat-resistant steel, aluminum alloy, Ti alloys and Ni-based alloys, offering valuable scientific insights into the industrial applications of laser shock processing (LSP) technology. The book addresses various topics, i.e., the formation mechanism and productivity improvement of nano-crystalline diamond by laser processing, the surface integrity and fatigue lives of heat-resistant steels, Ti alloys and Ni-based alloys after LSP with different processing parameters, tensile properties and fractural morphology after LSP at different temperatures, strain-rates and grain refinement mechanisms based on the micro-structure evolution. Moreover, the effect of heating temperature and exposure time on stress thermal relaxation and the influence of compressive stress on the stress intensity factor of hole-edge cracks by high strain rate laser shock processing are also analyzed. A new type of statistical data model to describe the fatigue cracking growth with limited data is proposed based on the consideration of the effects of fracture growth on the reliability and confidence level. This book is intended for researchers, engineers and postgraduates in the fields of nanotechnology and micro-engineering who are interested in the partial or overall strengthening of materials, especially those with a focus on surface integrity and fatigue life.
This book reviews the structure and electronic, magnetic, and other properties of various MoS2 (Molybdenum disulfide) nanostructures, with coverage of synthesis, Valley polarization, spin physics, and other topics. MoS2 is an important, graphene-like layered nano-material that substantially extends the range of possible nanostructures and devices for nanofabrication. These materials have been widely researched in recent years, and have become an attractive topic for applications such as catalytic materials and devices based on field-effect transistors (FETs) and semiconductors. Chapters from leading scientists worldwide create a bridge between MoS2 nanomaterials and fundamental physics in order to stimulate readers' interest in the potential of these novel materials for device applications. Since MoS2 nanostructures are expected to be increasingly important for future developments in energy and other electronic device applications, this book can be recommended for Physics and Materials Science and Engineering departments and as reference for researchers in the field.
This book presents a basic introduction to micromechanisms and microactuators, particularly to their basic configurations and design. This book fills the persisting gap in the published literature on the mechanical manipulative aspects of micromechanisms. It also helps in offering specialized introductory courses on micromechanisms and microactuators not as part of MEMS sensing devices, but as mechanical manipulative systems. The level of the book is suitable for use in both undergraduate and introductory graduate programmes. The book presents an overview of miniaturization and scaling laws, basic design principles of micro-sized mechanisms and actuators, micro-fabrication processes, and some futuristic issues. The volume contains a large number of figures and illustrations for easy understanding by the readers. It will also be useful to researchers and professionals looking for an introduction to the topic.
At the same time that the pace of science and technology has greatly accelerated in recent decades, our legal and ethical oversight mechanisms have become bogged down and slower. This book addresses the growing gap between the pace of science and technology and the lagging responsiveness of legal and ethical oversight society relies on to govern emerging technologies. Whether it be biotechnology, genetic testing, nanotechnology, synthetic biology, computer privacy, autonomous robotics, or any of the other many emerging technologies, new approaches are needed to ensure appropriate and timely regulatory responses. This book documents the problem and offers a toolbox of potential regulatory and governance approaches that might be used to ensure more responsive oversight.
This book highlights the most recent advances in nano science from leading researchers in Ukraine, Europe and beyond. It features contributions from participants of the 3rd International Summer School "Nanotechnology: From Fundamental Research to Innovations," held in Yaremche, Ukraine on August 23-26, 2014 and of the 2nd International NANO-2014 Conference, held in Lviv, Ukraine on August 27-30, 2014. These events took place within the framework of the European Commission FP7 project Nano twinning and were organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy) and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results in the areas of nanocomposites and nanomaterials, nanostructured surfaces, microscopy of nano-objects, nano-optics and nano photonics, nano plasmonics, nano chemistry, nano biotechnology and surface enhanced spectroscopy. Covers nanocomposites, nano structured surfaces and nano biotechnology Presents state-of-the-art advances in nano plasmonics, nanomaterials characterization and surface enhanced spectroscopy Represents essential reading for advanced undergraduate and graduate students through practicing university and industry researchers
This book brings together papers from all spheres of mechanical engineering related to gears and transmissions, from fundamentals to advanced applications, from academic results in numerical and experimental research, to new approaches to gear design and aspects of their optimization synthesis and to the latest developments in manufacturing. Furthermore, this volume honours the work of Faydor L. Litvin on the 100th anniversary of this birth. He is acknowledged as the founder of the modern theory of gearing. An exhaustive list of his contributions and achievements and a biography are included.
First compiled in 1929 as a pioneer work by the late G.H. Baillie, this directory of watchmakers and clock makers of the past soon established itself as the standard reference source and has been used ever since by watchmakers and clockmakers, collectors, dealers, museums, historians, and libraries the world over. The list of makers has more than doubled, having been thoroughly updated and revised by Brian Loomes in this twenty-first century edition, and now contains information on about 90,000 makers working between the late 16th and early 20th centuries. As well as the makers and retailers of clocks and watches, the list includes makers of scientific instruments, sundials, and barometers. Working dates include dates and places of birth, apprenticeship, freedom, marriage and death, as well as movement between different locations, and monograms. It is a unique and essential work of reference.
This book introduces non-identifier-based adaptive control (with and without internal model) and its application to the current, speed and position control of mechatronic systems such as electrical synchronous machines, wind turbine systems, industrial servo systems, and rigid-link, revolute-joint robots. In mechatronics, there is often only rough knowledge of the system. Due to parameter uncertainties, nonlinearities and unknown disturbances, model-based control strategies can reach their performance or stability limits without iterative controller design and performance evaluation, or system identification and parameter estimation. The non-identifier-based adaptive control presented is an alternative that neither identifies the system nor estimates its parameters but ensures stability. The adaptive controllers are easy to implement, compensate for disturbances and are inherently robust to parameter uncertainties and nonlinearities. For controller implementation only structural system knowledge (like relative degree, input-to-state stable zero dynamics and known sign of the high-frequency gain) is required. Moreover, the presented controllers guarantee reference tracking with prescribed asymptotic or transient accuracy, i.e. the tracking error eventually tends to or for all time evolves within an a priori specified region. The book presents the theory, modeling and application in a general but detailed and self-contained manner, making it easy to read and understand, particularly for newcomers to the topics covered
Nanoelectronics, as a true successor of microelectronics, is certainly a major technology boomer in the 21st century. This has been shown by its several applications and also by its enormous potential to influence all areas of electronics, computers, information technology, aerospace defense, and consumer goods. Although the current semiconductor technology is projected to reach its physical limit in about a decade, nanoscience and nanotechnology promise breakthroughs for the future. The present books provides an in-depth review of the latest advances in the technology of nanoelectronic devices and their developments over the past decades. Moreover, it introduces new concepts for the realization of future nanoelectronic devices. The main focus of the book is on three fundamental branches of semiconductor products or applications: logic, memory, and RF and communication. By pointing out to the key technical challenges, important aspects and characteristics of various designs are used to illustrate mechanisms that overcome the technical barriers. Furthermore, by comparing advantages and disadvantages of different designs, the most promising solutions are indicated for each application. |
You may like...
System Design with SystemC (TM)
Thorsten Groetker, Stan Liao, …
Hardcover
R4,811
Discovery Miles 48 110
Language Technologies for the Challenges…
Georg Rehm, Thierry Declerck
Hardcover
R1,491
Discovery Miles 14 910
|