![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture
This book provides an updated review on the development of scanning probe microscopy and related techniques, and the availability of computational techniques not even imaginable a few decades ago. The 36 chapters cover instrumental aspects, theoretical models and selected experimental results, thus offering a broad panoramic view on fundamental issues in nanotribology which are currently being investigated. Compared to the first edition, several topics have been added, including triboluminescence, graphene mechanics, friction and wear in liquid environments, capillary condensation, and multiscale friction modeling. Particular care has been taken to avoid overlaps and guarantee the independence of the chapters. In this way, our book aims to become a key reference on this subject for the next five to ten years to come.
Advancement of Optical Methods in Experimental Mechanics: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics, the third volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of optical methods ranging from traditional photoelasticity and interferometry to more recent DIC and DVC techniques, and includes papers in the following general technical research areas: Optical metrology and displacement measurements at different scales Digital holography and experimental mechanics Optical measurement systems using polarized light Surface topology Digital image correlation Optical methods for MEMS and NEMS Three-dimensional imaging and volumetric correlation Imaging methods for thermomechanics applications 3D volumetric flow measurement Applied photoelasticity Optical residual stress measurement techniques Advances in imaging technologies
Nanoparticles for Gene Delivery into Stem Cells and Embryos, by Pallavi Pushp, Rajdeep Kaur, Hoon Taek Lee, Mukesh Kumar Gupta. Engineering of Polysaccharides via Nanotechnology, by Joydeep Dutta. Hydroxyapatite-Packed Chitosan-PMMA Nanocomposite: A Promising Material for Construction of Synthetic Bone, by Arundhati Bhowmick, Subhash Banerjee, Ratnesh Kumar, Patit Paban Kundu. Biodegradable Polymers for Potential Delivery Systems for Therapeutics, by Sanjeev K. Pandey, Chandana Haldar, Dinesh K. Patel, Pralay Maiti. Phytomedicine-Loaded Polymeric Nanomedicines: Potential Cancer Therapeutics, by S. Maya, M. Sabitha, Shantikumar V. Nair, R. Jayakumar. Proteins and Carbohydrates as Polymeric Nanodrug Delivery Systems: Formulation, Properties and Toxicological Evaluation, by Dhanya Narayanan, J. Gopikrishna, Shantikumar V. Nair, Deepthy Menon. Biopolymeric Micro and Nanoparticles: Preparation, Characterization and Industrial Applications, by Anil Kumar Anal, Alisha Tuladhar. Applications of Glyconanoparticles as "Sweet" Glycobiological Therapeutics and Diagnostics, by Naresh Kottari, Yoann M. Chabre, Rishi Sharma, Rene Roy.
This first edition of conference Proceedings reflects the expansion of the field of Mechatronics, which has now taken its place in the world of newer transdisciplinary fields of Adaptronics, Integronics, and Cyber-Mix Mechatronics. It presents state-of-the art advances in Mechatronics, Adaptronics, Integronics and Cyber-Mix-Mechatronics. The 1st International Conference of Mechatronics and Cyber-MixMechatronics/ICOMECYME was organized by the National Institute of R&D in Mechatronics and Measurement Technique in Bucharest (Romania), on September 7th-8th, 2017 and attracted specialists from all over the world-including North America, South America, and Asia. In addition to presenting research results, ICOMECYME also offered a forum for exchange between R&D experts.
This book shows how severe plastic deformation techniques could be used to enhance the hydrogen storage properties of metal hybrides. The mechanochemical techniques of ball-milling (BM), Cold Rolling (CR), Equal Chanel Angular Pressing (ECAP) and High Pressure Torsion (HPT) are covered. Each technique is described and critically assessed with respect to its usefulness to process metal hybrides at an industrial scale.
This book explains the operating principles of atomic force microscopy and scanning tunneling microscopy. The aim of this book is to enable the reader to operate a scanning probe microscope successfully and understand the data obtained with the microscope. The chapters on the scanning probe techniques are complemented by the chapters on fundamentals and important technical aspects. This textbook is primarily aimed at graduate students from physics, materials science, chemistry, nanoscience and engineering, as well as researchers new to the field.
In this thesis a prospective approach was developed to identify and to assess current as well as potentially upcoming product applications with focus on environmental releases and exposures of engineered nanomaterials. The developed product application scenarios were illustrated in case studies on iron oxide and silver nanoparticles. It was shown that despite of prevailing knowledge gaps, reasonable estimations for environmental releases and exposures can be made. This novel approach facilitates the identification of early indicators for precautionary risk management measures and among them benign by design concepts in technology and product development.
This book captures selected peer reviewed papers presented at the 5th International Conference on Sustainable Automotive Technologies, ICSAT 2013, held in Ingolstadt, Germany. ICSAT is the state-of-the-art conference in the field of new technologies for transportation. The book brings together the work of international researchers and practitioners under the following interrelated headings: fuel transportation and storage, material recycling, manufacturing and management costs, engines and emission reduction. The book provides a very good overview of research and development activities focused on new technologies and approaches capable of meeting the challenges to sustainable mobility.
This book presents recent advances and developments in control, automation, robotics, and measuring techniques. It presents contributions of top experts in the fields, focused on both theory and industrial practice. In particular the book is devoted to new ideas, challenges, solutions and applications of Mechatronics. The particular chapters present a deep analysis of a specific technical problem which is in general followed by a numerical analysis and simulation, and results of an implementation for the solution of a real world problem. The presented theoretical results, practical solutions and guidelines will be useful for both researchers working in the area of engineering sciences and for practitioners solving industrial problems.
This thesis consists of an in-depth study of investigating microstructure-property relationships in bulk metallic glasses using a novel quantitative approach by which influence of the second phase features on mechanical properties can be independently and systematically analyzed. The author evaluates and optimizes the elastic and plastic deformation, as well as the overall toughness of cellular honeycombs under in-plane compression and porous heterostructures under uniaxial tension. The study reveals three major deformation zones in cellular metallic glass structures, where deformation changes from collective buckling showing non-linear elasticity to localized failure exhibiting a brittle-like deformation, and finally to global sudden failure with negligible plasticity as the length to thickness ratio of the ligaments increases. The author found that spacing and size of the pores, the pore configuration within the matrix, and the overall width of the sample determines the extent of deformation, where the optimized values are attained for pore diameter to spacing ratio of one with AB type pore stacking.
This book deals with the theoretical and computational simulation of monoperiodic nanostructures for different classes of inorganic substances. These simulations are related to their synthesis and experimental studies. A theoretical formalism is developed to describe 1D nanostructures with symmetric shapes and morphologies. Three types of models are considered for this aim: (i) nanotubes (rolled from 2D nanolayers and described within the formalism of line symmetry groups); (ii) nanoribbons (obtained from 2D nanolayers by their cutting along the chosen direction of translation); (iii) nanowires (obtained from 3D lattice by its sectioning along the crystalline planes parallel to the chosen direction of translation). Quantum chemistry ab-initio methods applied for LCAO calculations on electronic and vibrational properties of 1D nanostructures are thoroughly described. Understanding of theoretical aspects presented here enlarges the possibilities for synthesis of monoperiodic nanostructures with predictable morphology and better interpretation of their properties.
For Microelectromechanical Systems (MEMS) and Nanoelectromechanical Systems (NEMS) production, each product requires a unique process technology. This book provides a comprehensive insight into the tools necessary for fabricating MEMS/NEMS and the process technologies applied. Besides, it describes enabling technologies which are necessary for a successful production, i.e., wafer planarization and bonding, as well as contamination control.
This book will cover the most recent progress on the use of low-cost nanomaterials and development of low-cost/large scale processing techniques for greener and more efficient energy related applications, including but not limited to solar cells, energy storage, fuel cells, hydrogen generation, biofuels, etc. Leading researchers will be invited to author chapters in the field with their expertise. Each chapter will provide general introduction to a specific topic, current status of research and development, research challenges and outlook for future direction of research. This book aims to benefit a broad readership, from undergraduate/graduate students to researchers working on renewable energy.
The thesis covers a broad range of electronic, optical and opto-electronic devices and various predicted physical effects. In particular, it examines the quantum interference transistor effect in graphene nanorings; tunable spin-filtering and spin-dependent negative differential resistance in composite heterostructures based on graphene and ferromagnetic materials; optical and novel electro-optical bistability and hysteresis in compound systems and the real-time control of radiation patterns of optical nanoantennas. The direction of the main radiation lobe of a regular plasmonic array can be changed abruptly by small variations in external control parameters. This optical effect, apart from its relevance for applications, is a revealing example of the Umklapp process and, thus, is a visual manifestation of one of the most fundamental laws of solid state physics: the conservation of the quasi-momentum to within a reciprocal lattice vector. The thesis analyzes not only results for particular device designs but also a variety of advanced numerical methods which are extended by the author and described in detail. These methods can be used as a sound starting point for further research.
Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.
The road vehicle of the future will embrace innovations from three major automotive technology fields: driver assistance systems, vehicle networking and alternative propulsion. Smart systems such as adaptive ICT components and MEMS devices, novel network architectures, integrated sensor systems, intelligent interfaces and functional materials form the basis of these features and permit their successful and synergetic integration. They increasingly appear to be the key enabling technologies for safe and green road mobility. For more than fifteen years the International Forum on Advanced Microsystems for Automotive Applications (AMAA) has been successful in detecting novel trends and in discussing the technological implications from early on. The topic of the AMAA 2013 will be "Smart Systems for Safe and Green Vehicles". This book contains peer-reviewed papers written by leading engineers and researchers which all address the ongoing research and novel developments in the field. www.amaa.de
Authored by the developer of dressed photon science and technology as well as nanophotonics, this book outlines concepts of the subject using a novel theoretical framework that differs from conventional wave optics. It provides a quantum theoretical description of optical near fields and related problems that puts matter excitation such as electronic and vibrational ones on an equal footing with photons. By this description, optical near fields are interpreted as quasi-particles and named dressed photons which carry the material excitation energy in a nanometric space. The author then explores novel nanophotonic devices, fabrications, and energy conversion based on the theoretical picture of dressed photons. Further, this book looks at how the assembly of nanophotonic devices produces information and communication systems. Dressed photon science and technology is on its way to revolutionizing various applications in devices, fabrications, and systems. Promoting further exploration in the field, this book presents physically intuitive concepts, theories, and technical details for students, engineers, and scientists engaged in research and development in dressed photon science and technology as well as nanophotonics.
This volume contains the Proceedings of MUSME 2014, held at Huatulco in Oaxaca, Mexico, October 2014. Topics include analysis and synthesis of mechanisms; dynamics of multibody systems; design algorithms for mechatronic systems; simulation procedures and results; prototypes and their performance; robots and micromachines; experimental validations; theory of mechatronic simulation; mechatronic systems; and control of mechatronic systems. The MUSME symposium on Multibody Systems and Mechatronics was held under the auspices of IFToMM, the International Federation for Promotion of Mechanism and Machine Science, and FeIbIM, the Iberoamerican Federation of Mechanical Engineering. Since the first symposium in 2002, MUSME events have been characterised by the way they stimulate the integration between the various mechatronics and multibody systems dynamics disciplines, present a forum for facilitating contacts among researchers and students mainly in South American countries, and serve as a joint conference for the IFToMM and FeIbIM communities.
A variety of nanomaterials have excellent optoelectronic and electronic properties for novel device applications. At the same time, and with advances in silicon integrated circuit (IC) techniques, compatible Si-based nanomaterials hold promise of applying the advantages of nanomaterials to the conventional IC industry. This book focuses not only on silicon nanomaterials, but also summarizes up-to-date developments in the integration of non-silicon nanomaterials on silicon. The book showcases the work of leading researchers from around the world who address such key questions as: Which silicon nanomaterials can give the desired optical, electrical, and structural properties, and how are they prepared? What nanomaterials can be integrated on to a silicon substrate and how is this accomplished? What Si-based nanomaterials may bring a breakthrough in this field? These questions address the practical issues associated with the development of nanomaterial-based devices in applications areas such as solar cells, luminous devices for optical communication (detectors, lasers), and high mobility transistors. Investigation of silicon-based nanostructures is of great importance to make full use of nanomaterials for device applications. Readers will receive a comprehensive view of Si-based nanomaterials, which will hopefully stimulate interest in developing novel nanostructures or techniques to satisfy the requirements of high performance device applications. The goal is to make nanomaterials the main constituents of the high performance devices of the future.
This book presents the technological basics and applications of small-scale (mm to sub-mm in length-scales) soft robots and devices, written for researchers in both academia and industry. Author Jaeyoun Kim presents technological motivations, enabling factors, and examples in an inter-linked fashion, making it easy for readers to understand and explore how microscale soft robots are a solution to researchers in search of technological platforms for safe, human-friendly biomedical devices. A compact and timely introduction, this book summarizes not only the enabling factors for soft robots and MEMS devices, but also provides a survey of progress in the field and looks to the future in terms of the material, design, and application aspects this technology demonstrates.
Colloidal nanocrystals show much promise as an optoelectronics architecture due to facile control over electronic properties afforded by chemical control of size, shape, and heterostructure. Unfortunately, realizing practical devices has been forestalled by the ubiquitous presence of charge "trap" states which compete with band-edge excitons and result in limited device efficiencies. Little is known about the defining characteristics of these traps, making engineered strategies for their removal difficult. This thesis outlines pulsed optically detected magnetic resonance as a powerful spectroscopy of the chemical and electronic nature of these deleterious states. Counterintuitive for such heavy atom materials, some trap species possess very long spin coherence lifetimes (up to 1.6 s). This quality allows use of the trapped charge's magnetic moment as a local probe of the trap state itself and its local environment. Beyond state characterization, this spectroscopy can demonstrate novel effects in heterostructured nanocrystals, such as spatially-remote readout of spin information and the coherent control of light harvesting yield.
Inorganic nanoparticles are among the most investigated objects nowadays, both in fundamental science and in various technical applications. In this book the physical properties of nanowires formed by nanoparticles with elongated shape, i.e. rod-like or wire-like, are described. The transition in the physical properties is analyzed for nanorods and nanowires consisting of spherical and rod-like nanoparticles. The physical properties of nanowires and elongated inorganic nanoparticles are reviewed too. The optical, electrical, magnetic, mechanical and catalytic properties of nanowires consisting of semiconductors, noble and various other metals, metal oxides properties and metal alloys are presented. The applications of nanorods and nanowires are discussed in the book.
This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 2nd International Summer School “Nanotechnology: From Fundamental Research to Innovations” and International Research and Practice Conference “Nanotechnology and Nanomaterials”, NANO-2013, which were held in Bukovel, Ukraine on August 25-September 1, 2013. These events took place within the framework of the European Commission FP7 project Nanotwinning, and were organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications.
This book provides a systematic presentation of the principles and practices behind the synthesis and functionalization of graphene and grapheme oxide (GO), as well as the fabrication techniques for transparent conductors from these materials. Transparent conductors are used in a wide variety of photoelectronic and photovoltaic devices, such as liquid crystal displays (LCDs), solar cells, optical communication devices, and solid-state lighting. Thin films made from indium tin oxide (ITO) have thus far been the dominant source of transparent conductors, and now account for 50% of indium consumption. However, the price of Indium has increased 1000% in the last 10 years. Graphene, a two-dimensional monolayer of sp2-bonded carbon atoms, has attracted significant interest because of its unique transport properties. Because of their high optical transmittance and electrical conductivity, thin film electrodes made from graphene nanosheets have been considered an ideal candidate to replace expensive ITO films. Graphene for Transparent Conductors offers a systematic presentation of the principles, theories and technical practices behind the structure-property relationship of the thin films, which are the key to the successful development of high-performance transparent conductors. At the same time, the unique perspectives provided in the applications of graphene and GO as transparent conductors will serve as a general guide to the design and fabrication of thin film materials for specific applications.
Nanosensors are rapidly becoming a technology of choice across diverse fields. They offer effective and affordable options for detecting and measuring chemical and physical properties in difficult-to-reach biological and industrial systems operating at the nanoscale. However, with nanosensor development occurring in so many fields, it has become difficult to stay current with the latest research and emerging applications. NANOSENSORS: Theory and Applications in Industry, Healthcare and Defense answers the need for a comprehensive resource on advances in this area. Dr. Teik-Cheng Lim, a highly regarded expert in novel materials and nanosensors crosses disciplines to bring together 17 pioneering experts who address the fundamental principles of nanosensors and their diverse applications. Serving to stimulate a convergence of information across otherwise isolated disciplines, this volume covers - Carbon-nanotube (CNT)-based sensors and their uses with a range of analytes, including gaseous molecules, organic charge transfer complexes, proteins, DNA, and antibodies CNT-based fluidic sensors for studying the shear stress of blood vessels and cells, useful in diagnosing many diseases Nanomechanical cantilever sensors, which offer low cost, fast response, and high specificity without the need for pre-analysis labeling Layer-by-layer (LbL) self-assembly and the Langmuir- Blodgett (LB) technique, highly efficient approaches when working with expensive biological compounds Fluorescence resonance energy for intracellular glucose monitoring Noble metal nanoparticles with their unique optical properties as colorimetric probes for biological analysis Optical capillary sensors as an affordable tool for classifying liquid samples Nanosensors in bioinformatics and their role in a much needed systems approach to healthcare With so much activity occurring in so many fields, further progress in the area of nanosensors is certain. Through the convergence of findings across many fields, as exemplified by this book, that progress can be accelerated. |
You may like...
Disciple - Walking With God
Rorisang Thandekiso, Nkhensani Manabe
Paperback
(1)
|