![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture
Recent progress in the synthesis of nanomaterials and our fundamental understanding of their properties has led to significant advances in nanomaterial-based gas, chemical and biological sensors. Leading experts around the world highlight the latest findings on a wide range of nanomaterials including nanoparticles, quantum dots, carbon nanotubes, molecularly imprinted nanostructures or plastibodies, nanometals, DNA-based structures, smart nanomaterials, nanoprobes, magnetic nanomaterials, organic molecules like phthalocyanines and porphyrins, and the most amazing novel nanomaterial, called graphene. Various sensing techniques such as nanoscaled electrochemical detection, functional nanomaterial-amplified optical assays, colorimetry, fluorescence and electrochemiluminescence, as well as biomedical diagnosis applications, e.g. for cancer and bone disease, are thoroughly reviewed and explained in detail. This volume will provide an invaluable source of information for scientists working in the field of nanomaterial-based technology as well as for advanced students in analytical chemistry, biochemistry, electrochemistry, material science, micro- and nanotechnology.
This book comprises a selection of the presentations made at the "Workshop on Dynamics and Control of Micro and Nanoscale Systems" held at IBM Research - Zurich, Switzerland, on the 10th and 11th of December 2009. The aim of the workshop was to bring together some of the leading researchers in the field of dynamics and control of micro- and nanoscale systems. It proved an excellent forum for discussing new ideas and approaches.
The first ever book on the applications of fullerenes and nanotubes. World's experts on the industrial use of these new forms of carbon contributes chapters, that are based on lectures given in a large workshop held on February 2001, and expanded thereafter. The contents are intended for those who are interested in the exploration of industrial applications of fullerenes and carbon nanotubes.
This text provides an introduction, at the level of an advanced student in engineering or physics, to the field of nanomechanics and nanomechanical devices. It provides a unified discussion of solid mechanics, transducer applications, and sources of noise and nonlinearity in such devices. Demonstrated applications of these devices, as well as an introduction to fabrication techniques, are also discussed. The text concludes with an overview of future technologies, including the potential use of carbon nanotubes and other molecular assemblies.
Since the original publication of Noncontact Atomic Force Microscopy in 2002, the noncontact atomic force microscope (NC-AFM) has achieved remarkable progress. This second treatment deals with the following outstanding recent results obtained with atomic resolution since then: force spectroscopy and mapping with atomic resolution; tuning fork; atomic manipulation; magnetic exchange force microscopy; atomic and molecular imaging in liquids; and other new technologies. These results and technologies are now helping evolve NC-AFM toward practical tools for characterization and manipulation of individual atoms/molecules and nanostructures with atomic/subatomic resolution. Therefore, the book exemplifies how NC-AFM has become a crucial tool for the expanding fields of nanoscience and nanotechnology.
This book is devoted to a wide range of problems concerning applications of nanomaterials and nanodevices as effective solutions to modern ecological problems. Leading experts in nanoscience and nanotechnology present the key theoretical, experimental and implementation issues related to the creation and utilization of novel nanoscale devices to help ensure ecological security. The authors discuss appropriate nanotechnologies for minimizing various types of risk: to human life, technogenic risk, or indeed terrorist threats. Particular emphasis is placed on defining and studying the required materials properties, and - in the field - on nanoscale devices for sensors and monitoring.
This Briefs volume describes the properties and structure of elementary excitations in isotope low-dimensional structures. Without assuming prior knowledge of quantum physics, the present book provides the basic knowledge needed to understand the recent developments in the sub-disciplines of nanoscience isotopetronics, novel device concepts and materials for nanotechnology. It is the first and comprehensive interdisciplinary account of the newly developed scientific discipline isotopetronics.
This is the first book to address modelling of systems that are important to the fabrication of three-dimensional microstructures. It is unique in that it focuses on high aspect ratio microtechnology, ranging from ion beam micromachining to x-ray lithography.
Provides the theoretical background needed by physicists, engineers and students to simulate nano-devices, semiconductor quantum dots and molecular devices. It presents in a unified way the theoretical concepts, the more recent semi-empirical and ab initio methods, and their application to experiments. The topics include quantum confinement, dielectric and optical properties, non-radiative processes, defects and impurities, and quantum transport. This guidebook not only provides newcomers with an accessible overview (requiring only basic knowledge of quantum mechanics and solid-state physics) but also provides active researchers with practical simulation tools.
In recent years, with the advent of ?ne line lithographical methods, molecular beam epitaxy, organometallic vapour phase epitaxy and other experimental techniques, low dimensional structures having quantum con?nement in one, two and three dimensions (such as inversion layers, ultrathin ?lms, nipi's, quantum well superlattices, quantum wires, quantum wire superlattices, and quantum dots together with quantum con?ned structures aided by various other ?elds) have attracted much attention, not only for their potential in uncovering new phenomena in nanoscience, but also for their interesting applications in the realm of quantum e?ect devices. In ultrathin ?lms, due to the reduction of symmetry in the wave-vector space, the motion of the carriers in the direction normal to the ?lm becomes quantized leading to the quantum size e?ect. Such systems ?nd extensive applications in quantum well lasers, ?eld e?ect transistors, high speed digital networks and also in other low dimensional systems. In quantum wires, the carriers are quantized in two transverse directions and only one-dimensional motion of the carriers is allowed. The transport properties of charge carriers in quantum wires, which may be studied by utilizing the similarities with optical and microwave waveguides, are currently being investigated. Knowledge regarding these quantized structures may be gained from original research contributions in scienti?c journals, proceedings of international conferences and various - view articles.
This volume contains the proceedings of the IUTAM Symposium on Mechanical Behavior and Micro-mechanics of Nanostructured Materials, held in Beijing on June 27-30, 2005. The proceedings consist of approximately 30 presentations. Nano-scale, micro-scale, theoretical, experimental and numerical aspects of the subjects are covered. A wide scope of research and progress are displayed. This is the first work in print on this particular subject.
An outstanding feature of this book is a collection of
state-of-the-art reviews written by leading researchers in the
nanomechanics of carbon nanotubes, nanocrystalline materials,
biomechanics and polymer nanocomposites. The structure and
properties of carbon nanotubes, polycrystalline metals, and
coatings are discussed in great details. The book is an exceptional
resource on multi-scale modelling of metals, nanocomposites, MEMS
materials and biomedical applications. An extensive bibliography
concerning all these topics is included. Highlights on
bio-materials, MEMS, and the latest multi-scale methods (e.g.,
molecular dynamics and Monte Carlo) are presented. Numerous
illustrations of inter-atomic potentials, nanotube deformation and
fracture, grain rotation and growth in solids, ceramic coating
structures, blood flows and cell adhesion are discussed.
Over the past decade, important advances have been made in the
development of nanostructured materials for solid state hydrogen
storage used to supply hydrogen to fuel cells in a clean,
inexpensive, safe and efficient manner. Nanomaterials for Solid
State Hydrogen Storage focuses on hydrogen storage materials having
high volumetric and gravimetric hydrogen capacities, and thus
having the highest potential of being applied in the automotive
sector. Written by leading experts in the field, Nanomaterials for Solid State Hydrogen Storage provides a thorough history of hydrides and nanomaterials, followed by a discussion of existing fabrication methods. The authors own research results in the behavior of various hydrogen storage materials are also presented. Covering fundamentals, extensive research results and recent advances in nanomaterials for solid state hydrogen storage, this book serves as a comprehensive reference."
The first volume in the series was released in January 2004 and the second to fourth volumes in early 2006. The field is now progressing so fast that there is a need for one volume every 12 to 18 months to capture latest developments. Volume VII presents 9 chapters on a variety of new and emerging techniques and refinements of SPM applications.
The volumes V, VI and VII will examine the physical and technical foundation for recent progress in applied scanning probe techniques. These volumes constitute a timely comprehensive overview of SPM applications. This is the first book summarizing the state-of-the-art of this technique. The chapters are written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective.
In Periodic Nanostructures, the authors demonstrate that structural periodicity in various nanostructures has been proven experimentally. The text covers the coalescence reactions, studied by electronic microscopy, and shows that the nanoworld is continuous, giving rise to zero- (fullerenes), one- (tubules), two-(graphite) and three-(diamond, spongy carbon) dimensional carbon allotropes. The authors explore foam-like carbon structures, which relate to schwarzites, and which represent infinite periodic minimal surfaces of negative curvature. They show that these structures contain polygons (with dimensions larger than hexagons w.r.t. to graphite) that induce this negative curvature. The units of these structures appear as nanotube junctions (produced via an electron beam) that have wide potential molecular electronics applications. Self-assembled supramolecular structures (of various tessellation) and diamond architectures are also proposed. The authors propose that the periodicity of close repeat units of such structures is most evident not only in these formations but also present in all of the carbon allotropes. It is also shown that depending on the lattice tessellation, heteroatom type, and/or doping, metal nanostructures (nanotubes in particular) can display both metallic and semiconductor characteristics. Therefore, their properties can be manipulated by chemical functionalization. The authors therefore suggest that nanostructures have heralded a new generation of nanoscale biological, chemical, and physical devices. The text also provides literature and data on the field of nanostructure periodicity and the authors own results on nanostructure building and energy calculations as well as topological characterization by means of counting polynomials of periodic nanostructures. The aromaticity of various coverings of graphitic structures is also discussed. This book is aimed at scientists working in the field of nanoscience and nanotechnology, Ph.D. and MSc. degree students, and others interested in the amazing nanoarchitectures that could inspire the cities of the future."
Advances in nanoscience and nanotechnology promise great technical breakthroughs in the coming decades. In this book, leading scientists, engineers, and social scientists review the possible uses of these impending technical developments in various industrial, medical, and national security applications. They also examine the corresponding ethical, legal, social, economic, and educational issues that these developments raise.
This book focuses on chemical and nanophotonic technology to be used to develop novel nano-optical devices and systems. It begins with temperature- and photo-induced phase transition of ferromagnetic materials. Further topics include: energy transfer in artificial photosynthesis, homoepitaxial multiple quantum wells in ZnO, near-field photochemical etching and nanophotonic devices based on a nonadiabatic process and optical near-field energy transfer, respectively and polarization control in the optical near-field for optical information security. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.
The volumes VIII, IX and X examine the physical and technical foundation for recent progress in applied scanning probe techniques. This is the first book to summarize the state-of-the-art of this technique. The field is progressing so fast that there is a need for a set of volumes every 12 to 18 months to capture latest developments. These volumes constitute a timely comprehensive overview of SPM applications.
This handbook covers the broad scope of nanomedicine. Starting with the basics, the subject is developed to potential clinical applications, many of which are still at an experimental stage. The book features extensive coverage of nanodiagnostics and nanopharmaceuticals, which are two important components of nanomedicine. Written by a physician-scientist author who blends his clinical experience and scientific expertise in new technologies, this book provides a definitive account of nanomedicine. It offers more up-to-date and comprehensive coverage of nanomedicine than any other comparable work.
This book discusses the early stages of the development of nanostructures, including synthesis techniques, growth mechanisms, the physics and chemistry of nanostructured materials, various innovative characterization techniques, the need for functionalization and different functionalization methods as well as the various properties of nanostructured materials. It focuses on the applications of nanostructured materials, such as mechanical applications, nanoelectronics and microelectronic devices, nano-optics, nanophotonics and nano-optoelectronics, as well as piezoelectric, agriculture, biomedical and, environmental remediation applications, and anti-microbial and antibacterial properties. Further, it includes a chapter on nanomaterial research developments, highlighting work on the life-cycle analysis of nanostructured materials and toxicity aspects.
This book describes Microelectromechanical systems (MEMS) technology and demonstrates how MEMS allow miniaturization, parallel fabrication, and efficient packaging of optics, as well as integration of optics and electronics. The book shows how the characteristics of MEMS enable practical implementations of a variety of applications, including projection displays, fiber switches, interferometers, and spectrometers. The authors conclude with an up-to-date discussion of the need for the combination of MEMS and Photonic crystals.
Micromanufacturing and Nanotechnology is an emerging technological infrastructure and process that involves manufacturing of products and systems at the micro and nano scale levels. Development of micro and nano scale products and systems are underway due to the reason that they are faster, accurate and less expensive. Moreover, the basic functional units of such systems possesses remarkable mechanical, electronic and chemical properties compared to the macro-scale counterparts. Since this infrastructure has already become the prefered choice for the design and development of next generation products and systems it is now necessary to disseminate the conceptual and practical phenomenological know-how in a broader context. This book incorporates a selection of research and development papers. Its scope is the history and background, underlynig design methodology, application domains and recent developments.
Overview of recent achievements, describing the microactuator development of microvalves and liner actuators comprehensively from concept through prototype. Further key aspects included are three-dimensional models for handling complex SMA actuator geometries and coupled simulation routines that take multifunctional properties into account. Mechanical and thermal optimization criteria are introduced for actuator design, allowing an optimum use of the shape memory effect. It is shown that some of the prototypes presented, e.g. SMA microgrippers, already outperform conventional components. |
You may like...
MEMS: Field Models and Optimal Design
Paolo Di Barba, Slawomir Wiak
Hardcover
R3,335
Discovery Miles 33 350
Modeling, Methodologies and Tools for…
Jun-Ichi Suzuki, Tadashi Nakano, …
Hardcover
R4,172
Discovery Miles 41 720
New Directions in Thin Film…
Sreekanth K. V., Mohamed ElKabbash, …
Hardcover
R2,653
Discovery Miles 26 530
Hydrogels - Recent Advances
Vijay Kumar Thakur, Manju Kumari Thakur
Hardcover
R4,660
Discovery Miles 46 600
Biomimetic Lipid Membranes…
Fatma N. Koek, Ahu Arslan Yildiz, …
Hardcover
R2,692
Discovery Miles 26 920
Oyster Perpetual Submariner - The Watch…
Nicholas Foulkes
Hardcover
|