![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture
Part I introduces the basic "Principles and Methods of Force Measurement" according to a classification into a dozen of force transducers types: resistive, inductive, capacitive, piezoelectric, electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic (Hall-effect), vibrating wires, (micro)resonators, acoustic and gyroscopic. Two special chapters refer to force balance techniques and to combined methods in force measurement. Part II discusses the "(Strain Gauge) Force Transducers Components", evolving from the classical force transducer to the digital / intelligent one, with the incorporation of three subsystems (sensors, electromechanics and informatics). The elastic element (EE) is the "heart" of the force transducer and basically determines its performance. A 12-type elastic element classification is proposed (stretched / compressed column or tube, bending beam, bending and/or torsion shaft, middle bent bar with fixed ends, shear beam, bending ring, yoke or frame, diaphragm, axial-stressed torus, axisymmetrical and voluminous EE), with emphasis on the optimum location of the strain gauges. The main properties of the associated Wheatstone bridge, best suited for the parametrical transducers, are examined, together with the appropriate electronic circuits for SGFTs. The handbook fills a gap in the field of Force Measurement, both experts and newcomers, no matter of their particular interest, finding a lot of useful and valuable subjects in the area of Force Transducers; in fact, it is the first specialized monograph in this inter- and multidisciplinary field.
The present volume is a collection of review articles highlighting the fundamental advances made in this area by the internationally acclaimed research groups , most of them being pioneers themselves and coming together for the first time.
The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.
This book discusses in detail the recent trends in Computational Physics, Nano-physics and Devices Technology. Numerous modern devices with very high accuracy, are explored In conditions such as longevity and extended possibilities to work in wide temperature and pressure ranges, aggressive media, etc. This edited volume presents 32 selected papers of the 2013 International Conference on Science & Engineering in Mathematics, Chemistry and Physics. The book is divided into three scientific Sections: (i) Computational Physics, (ii) Nanophysics and Technology, (iii) Devices and Systems and is addressed to Professors, post-graduate students, scientists and engineers taking part in R&D of nano-materials, ferro-piezoelectrics, computational Physics and devices system, and also different devices based on broad applications in different areas of modern science and technology.
Covering the complete design cycle of nanopositioning systems, this is the first comprehensive text on the topic. The book first introduces concepts associated with nanopositioning stages and outlines their application in such tasks as scanning probe microscopy, nanofabrication, data storage, cell surgery and precision optics. Piezoelectric transducers, employed ubiquitously in nanopositioning applications are then discussed in detail including practical considerations and constraints on transducer response. The reader is then given an overview of the types of nanopositioner before the text turns to the in-depth coverage of mechanical design including flexures, materials, manufacturing techniques, and electronics. This process is illustrated by the example of a high-speed serial-kinematic nanopositioner. Position sensors are then catalogued and described and the text then focuses on control. Several forms of control are treated: shunt control, feedback control, force feedback control and feedforward control (including an appreciation of iterative learning control). Performance issues are given importance as are problems limiting that performance such as hysteresis and noise which arise in the treatment of control and are then given chapter-length attention in their own right. The reader also learns about cost functions and other issues involved in command shaping, charge drives and electrical considerations. All concepts are demonstrated experimentally including by direct application to atomic force microscope imaging. Design, Modeling and Control of Nanopositioning Systems will be of interest to researchers in mechatronics generally and in control applied to atomic force microscopy and other nanopositioning applications. Microscope developers and mechanical designers of nanopositioning devices will find the text essential reading.
This book reviews a range of quantum phenomena in novel nanoscale transistors called FinFETs, including quantized conductance of 1D transport, single electron effect, tunneling transport, etc. The goal is to create a fundamental bridge between quantum FinFET and nanotechnology to stimulate readers' interest in developing new types of semiconductor technology. Although the rapid development of micro-nano fabrication is driving the MOSFET downscaling trend that is evolving from planar channel to nonplanar FinFET, silicon-based CMOS technology is expected to face fundamental limits in the near future. Therefore, new types of nanoscale devices are being investigated aggressively to take advantage of the quantum effect in carrier transport. The quantum confinement effect of FinFET at room temperatures was reported following the breakthrough to sub-10nm scale technology in silicon nanowires. With chapters written by leading scientists throughout the world, Toward Quantum FinFET provides a comprehensive introduction to the field as well as a platform for knowledge sharing and dissemination of the latest advances. As a roadmap to guide further research in an area of increasing importance for the future development of materials science, nanofabrication technology, and nano-electronic devices, the book can be recommended for Physics, Electrical Engineering, and Materials Science departments, and as a reference on micro-nano electronic science and device design. Offers comprehensive coverage of novel nanoscale transistors with quantum confinement effect Provides the keys to understanding the emerging area of the quantum FinFET Written by leading experts in each research area Describes a key enabling technology for research and development of nanofabrication and nanoelectronic devices
This book presents the physical and technical foundation of the state of the art in applied scanning probe techniques. It constitutes a timely and comprehensive overview of SPM applications. The chapters in this volume relate to scanning probe microscopy techniques, characterization of various materials and structures and typical industrial applications, including topographic and dynamical surface studies of thin-film semiconductors, polymers, paper, ceramics, and magnetic and biological materials. The chapters are written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective.
Challenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Volume 2: Proceedings of the 2013 SEM Annual Conference& Exposition on Experimental and Applied Mechanics, the second volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental Mechanics, including papers in the following general technical research areas: Metallic, Polymeric and Composite Materials Effects of Extreme Environments including Radiation Resistance, Damage, and Aging Challenges in Time-dependent Behavior Modeling of Low, Moderate and High Strain Rates Effects of Frequency and Hysteretic Heating Effects of Inhomogeneities on the Time-Dependent Behavior Composite, Hybrid and Multifunctional Materials Challenges in Time-dependent Behavior Modeling Viscoelastoplasticity and Damage Effects of Interfaces and Interphases on the Time-Dependent Behavior Environmental and Reactive Property Change Effects on Thermomechanical and Multifunctional Behaviors Modeling and Characterization of Fabrication Processes of Conventional and Multifunctional Materials Time-dependent and Small-scale Effects in Micro/Nano-scale TestingTime-dependent Processes in Biomaterials
Advancement of Optical Methods in Experimental Mechanics: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics, the third volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of optical methods ranging from traditional photoelasticity and interferometry to more recent DIC and DVC techniques, and includes papers in the following general technical research areas: Optical metrology and displacement measurements at different scales Digital holography and experimental mechanics Optical measurement systems using polarized light Surface topology Digital image correlation Optical methods for MEMS and NEMS Three-dimensional imaging and volumetric correlation Imaging methods for thermomechanics applications 3D volumetric flow measurement Applied photoelasticity Optical residual stress measurement techniques Advances in imaging technologies
The 16thInternational Symposium on MEMS and Nanotechnology, Volume 5 of the Proceedings of the 2015SEM Annual Conference& Exposition on Experimental and Applied Mechanics, the fifth volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Microscale and Microstructural Effects on Mechanical Behavior Dynamic Micro/Nanomechanics In-situ Techniques Mechanics of Graphene Indentation and Small Scale Testing MEMS
MEMS and Nanotechnology, Volume 5: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics, the fifth volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Microelectronics Packaging Single Atom/Molecule Mechanical Testing MEMS Devices & Fabrication In-Situ Mechanical Testing Nanoindentation Experimental Analysis of Low-Dimensional Materials for Nanotechnology
Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.
This book focuses on the modeling and analysis of heat and fluid flow in microchannels and micro-systems, compiling a number of analytical and hybrid numerical-analytical solutions for models that account for the relevant micro-scale effects, with the corresponding experimental analysis validation when applicable. The volume stands as the only available compilation of easy to use analytically-based solutions for micro-scale heat and fluid flow problems, that systematically incorporates the most relevant micro-scale effects into the mathematical models, followed by their physical interpretation on the micro-system behavior.
This book is meant to serve as a textbook for beginners in the field of nanoscience and nanotechnology. It can also be used as additional reading in this multifaceted area. It covers the entire spectrum of nanoscience and technology: introduction, terminology, historical perspectives of this domain of science, unique and widely differing properties, advances in the various synthesis, consolidation and characterization techniques, applications of nanoscience and technology and emerging materials and technologies.
This book describes how surface tension effects can be used by engineers to provide mechanical functions in miniaturized products (<1 mm). Even if precursors of this field such as Jurin or Laplace already date back to the 18th century, describing surface tension effects from a mechanical perspective is very recent. The originality of this book is to consider the effects of capillary bridges on solids, including forces and torques exerted both statically and dynamically by the liquid along the 6 degrees-of-freedom. It provides a comprehensive approach to various applications, such as capillary adhesion (axial force), centering force in packaging and micro-assembly (lateral force) and recent developments such as a capillary motor (torque). It devises how surface tension can be used to provide mechanical functions such as actuation (bubble-actuated compliant table), sealing and tightness, energy harvesting, nanodispending.
Dynamic Behavior of Materials, Volume 1: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics, the first volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental Mechanics, including papers on: General Dynamic Material Properties Novel Dynamic Testing Techniques Dynamic Fracture and Failure Novel Testing Techniques Dynamic Behavior of Geo-materials Dynamic Behavior of Biological and Biomimetic Materials Dynamic Behavior of Composites and Multifunctional Materials Dynamic Behavior of Low-Impedance materials Multi-scale Modeling of Dynamic Behavior of Materials Quantitative Visualization of Dynamic Behavior of Materials Shock/Blast Loading of Materials
This book contains reviews of recent experimental and theoretical results related to nanomaterials. It focuses on novel functional materials and nanostructures in combination with silicon on insulator (SOI) devices, as well as on the physics of new devices and sensors, nanostructured materials and nano scaled device characterization. Special attention is paid to fabrication and properties of modern low-power, high-performance, miniaturized, portable sensors in a wide range of applications such as telecommunications, radiation control, biomedical instrumentation and chemical analysis. In this book, new approaches exploiting nanotechnologies (such as UTBB FD SOI, Fin FETs, nanowires, graphene or carbon nanotubes on dielectric) to pave a way between "More Moore" and "More than Moore" are considered, in order to create different kinds of sensors and devices which will consume less electrical power, be more portable and totally compatible with modern microelectronics products.
‘Micro-scaled Products Development via Microforming’ presents state-of-the-art research on microforming processes, and focuses on the development of micro-scaled metallic parts via microforming processes. Microforming refers to the fabrication of microparts via micro-scaled plastic deformation and presents a promising micromanufacturing process. When compared to other micromanufacturing processes, microforming offers advantages such as high productivity and good mechanical properties of the deformed microparts. This book provides extensive and informative illustrations, tables and photos in order to convey this information clearly and directly to readers. Although the knowledge of macroforming processes is abundant and widely used in industry, microparts cannot be developed by leveraging existing knowledge of macroforming because the size effect presents a barrier to this knowledge transfer. Therefore systematic knowledge of microforming needs to be developed. In tandem with product miniaturization, the demand on microparts has been increased for their wide applications in many industries, including automotive, bio-medical, aerospace and consumer electronics industries. Micromanufacturing technologies have thus become more and more important. This book is intended for postgraduates, manufacturing engineers and professionals working in the areas of manufacturing and materials processing.
Nanoparticles for Gene Delivery into Stem Cells and Embryos, by Pallavi Pushp, Rajdeep Kaur, Hoon Taek Lee, Mukesh Kumar Gupta. Engineering of Polysaccharides via Nanotechnology, by Joydeep Dutta. Hydroxyapatite-Packed Chitosan-PMMA Nanocomposite: A Promising Material for Construction of Synthetic Bone, by Arundhati Bhowmick, Subhash Banerjee, Ratnesh Kumar, Patit Paban Kundu. Biodegradable Polymers for Potential Delivery Systems for Therapeutics, by Sanjeev K. Pandey, Chandana Haldar, Dinesh K. Patel, Pralay Maiti. Phytomedicine-Loaded Polymeric Nanomedicines: Potential Cancer Therapeutics, by S. Maya, M. Sabitha, Shantikumar V. Nair, R. Jayakumar. Proteins and Carbohydrates as Polymeric Nanodrug Delivery Systems: Formulation, Properties and Toxicological Evaluation, by Dhanya Narayanan, J. Gopikrishna, Shantikumar V. Nair, Deepthy Menon. Biopolymeric Micro and Nanoparticles: Preparation, Characterization and Industrial Applications, by Anil Kumar Anal, Alisha Tuladhar. Applications of Glyconanoparticles as "Sweet" Glycobiological Therapeutics and Diagnostics, by Naresh Kottari, Yoann M. Chabre, Rishi Sharma, Rene Roy.
This book captures selected peer reviewed papers presented at the 5th International Conference on Sustainable Automotive Technologies, ICSAT 2013, held in Ingolstadt, Germany. ICSAT is the state-of-the-art conference in the field of new technologies for transportation. The book brings together the work of international researchers and practitioners under the following interrelated headings: fuel transportation and storage, material recycling, manufacturing and management costs, engines and emission reduction. The book provides a very good overview of research and development activities focused on new technologies and approaches capable of meeting the challenges to sustainable mobility.
Metal-dielectric interfaces are ubiquitous in modern electronics. As advanced gigascale electronic devices continue to shrink, the stability of these interfaces is becoming an increasingly important issue that has a profound impact on the operational reliability of these devices. In this book, the authors present the basic science underlying the thermal and electrical stability of metal-dielectric interfaces and its relationship to the operation of advanced interconnect systems in gigascale electronics. Interface phenomena, including chemical reactions between metals and dielectrics, metallic-atom diffusion, and ion drift, are discussed based on fundamental physical and chemical principles. Schematic diagrams are provided throughout the book to illustrate interface phenomena and the principles that govern them. Metal-Dielectric Interfaces in Gigascale Electronics provides a unifying approach to the diverse and sometimes contradictory test results that are reported in the literature on metal-dielectric interfaces. The goal is to provide readers with a clear account of the relationship between interface science and its applications in interconnect structures. The material presented here will also be of interest to those engaged in field-effect transistor and memristor device research, as well as university researchers and industrial scientists working in the areas of electronic materials processing, semiconductor manufacturing, memory chips, and IC design.
This book provides a state of the art report of the knowledge accumulated in graphene research. The fascination with graphene has been growing very rapidly in recent years and the physics of graphene is now becoming one of the most interesting as well as the most fast-moving topics in condensed-matter physics. The Nobel prize in physics awarded in 2010 has given a tremendous impetus to this topic. The horizon of the physics of graphene is ever becoming wider, where physical concepts go hand in hand with advances in experimental techniques. Thus this book is expanding the interests to not only transport but optical and other properties for systems that include multilayer as well as monolayer graphene systems. The book comprises experimental and theoretical knowledge. The book is also accessible to graduate students.
This volume documents the first International Workshop on Atomic Scale Interconnection Machines organised by the European Integrated Project AtMol in June 2011 in Singapore. The four sessions, discussed here in revised contributions by high level speakers, span the subjects of multi-probe UHV instrumentation, atomic scale nano-material nanowires characterization, atomic scale surface conductance measurements, surface atomic scale mechanical machineries. This state-of-the-art account brings academic researchers and industry engineers access to the tools they need to be at the forefront of the atomic scale technology revolution.
This book offers detailed insights into spin transfer torque (STT) based devices, circuits and memories. Starting with the basic concepts and device physics, it then addresses advanced STT applications and discusses the outlook for this cutting-edge technology. It also describes the architectures, performance parameters, fabrication, and the prospects of STT based devices. Further, moving from the device to the system perspective it presents a non-volatile computing architecture composed of STT based magneto-resistive and all-spin logic devices and demonstrates that efficient STT based magneto-resistive and all-spin logic devices can turn the dream of instant on/off non-volatile computing into reality.
This book provides a broad overview on the relationship between structure and mechanical properties of carbon nanomaterials from world-leading scientists in the field. The main aim is to get an in-depth understanding of the broad range of mechanical properties of carbon materials based on their unique nanostructure and on defects of several types and at different length scales. Besides experimental work mainly based on the use of (in-situ) Raman and X-ray scattering and on nanoindentation, the book also covers some aspects of multiscale modeling of the mechanics of carbon nanomaterials. |
![]() ![]() You may like...
New Developments in Singularity Theory
Dirk Wiersma, C.T.C. Wall, …
Hardcover
R3,154
Discovery Miles 31 540
Biosensors: A Chinese Perspective…
Reinhard Renneberg, A.P.F. Turner
Hardcover
R3,447
Discovery Miles 34 470
Smart Technologies in Data Science and…
Sanjoy Kumar Saha, Paul S. Pang, …
Hardcover
R5,645
Discovery Miles 56 450
Song For Sarah - Lessons From My Mother
Jonathan Jansen, Naomi Jansen
Hardcover
![]()
Contemporary Issues in Management…
Lindsay Hamilton, Laura Mitchell, …
Hardcover
R3,030
Discovery Miles 30 300
Petri Net Synthesis for Discrete Event…
MengChu Zhou, F. DiCesare
Hardcover
R4,493
Discovery Miles 44 930
Quality Management for Organizational…
David Goetsch, Stanley Davis
Paperback
R2,723
Discovery Miles 27 230
|