![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture
This volume contains the proceedings of the IUTAM Symposium on Mechanical Behavior and Micro-mechanics of Nanostructured Materials, held in Beijing on June 27-30, 2005. The proceedings consist of approximately 30 presentations. Nano-scale, micro-scale, theoretical, experimental and numerical aspects of the subjects are covered. A wide scope of research and progress are displayed. This is the first work in print on this particular subject.
An outstanding feature of this book is a collection of
state-of-the-art reviews written by leading researchers in the
nanomechanics of carbon nanotubes, nanocrystalline materials,
biomechanics and polymer nanocomposites. The structure and
properties of carbon nanotubes, polycrystalline metals, and
coatings are discussed in great details. The book is an exceptional
resource on multi-scale modelling of metals, nanocomposites, MEMS
materials and biomedical applications. An extensive bibliography
concerning all these topics is included. Highlights on
bio-materials, MEMS, and the latest multi-scale methods (e.g.,
molecular dynamics and Monte Carlo) are presented. Numerous
illustrations of inter-atomic potentials, nanotube deformation and
fracture, grain rotation and growth in solids, ceramic coating
structures, blood flows and cell adhesion are discussed.
In recent years, with the advent of ?ne line lithographical methods, molecular beam epitaxy, organometallic vapour phase epitaxy and other experimental techniques, low dimensional structures having quantum con?nement in one, two and three dimensions (such as inversion layers, ultrathin ?lms, nipi's, quantum well superlattices, quantum wires, quantum wire superlattices, and quantum dots together with quantum con?ned structures aided by various other ?elds) have attracted much attention, not only for their potential in uncovering new phenomena in nanoscience, but also for their interesting applications in the realm of quantum e?ect devices. In ultrathin ?lms, due to the reduction of symmetry in the wave-vector space, the motion of the carriers in the direction normal to the ?lm becomes quantized leading to the quantum size e?ect. Such systems ?nd extensive applications in quantum well lasers, ?eld e?ect transistors, high speed digital networks and also in other low dimensional systems. In quantum wires, the carriers are quantized in two transverse directions and only one-dimensional motion of the carriers is allowed. The transport properties of charge carriers in quantum wires, which may be studied by utilizing the similarities with optical and microwave waveguides, are currently being investigated. Knowledge regarding these quantized structures may be gained from original research contributions in scienti?c journals, proceedings of international conferences and various - view articles.
This book presents an overview of nanostructure determination and ways to find relationships to the electronic and optical properties. The methods described can be applied to a large number of other granular metal-insulator systems and used as a guideline for characterisation and modelling. In addition, the book describes the manufacture of artificially structured nanomaterials using laser or electron-beam irradiation.
Over the past decade, important advances have been made in the
development of nanostructured materials for solid state hydrogen
storage used to supply hydrogen to fuel cells in a clean,
inexpensive, safe and efficient manner. Nanomaterials for Solid
State Hydrogen Storage focuses on hydrogen storage materials having
high volumetric and gravimetric hydrogen capacities, and thus
having the highest potential of being applied in the automotive
sector. Written by leading experts in the field, Nanomaterials for Solid State Hydrogen Storage provides a thorough history of hydrides and nanomaterials, followed by a discussion of existing fabrication methods. The authors own research results in the behavior of various hydrogen storage materials are also presented. Covering fundamentals, extensive research results and recent advances in nanomaterials for solid state hydrogen storage, this book serves as a comprehensive reference."
The first volume in the series was released in January 2004 and the second to fourth volumes in early 2006. The field is now progressing so fast that there is a need for one volume every 12 to 18 months to capture latest developments. Volume VII presents 9 chapters on a variety of new and emerging techniques and refinements of SPM applications.
The volumes V, VI and VII will examine the physical and technical foundation for recent progress in applied scanning probe techniques. These volumes constitute a timely comprehensive overview of SPM applications. This is the first book summarizing the state-of-the-art of this technique. The chapters are written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective.
In Periodic Nanostructures, the authors demonstrate that structural periodicity in various nanostructures has been proven experimentally. The text covers the coalescence reactions, studied by electronic microscopy, and shows that the nanoworld is continuous, giving rise to zero- (fullerenes), one- (tubules), two-(graphite) and three-(diamond, spongy carbon) dimensional carbon allotropes. The authors explore foam-like carbon structures, which relate to schwarzites, and which represent infinite periodic minimal surfaces of negative curvature. They show that these structures contain polygons (with dimensions larger than hexagons w.r.t. to graphite) that induce this negative curvature. The units of these structures appear as nanotube junctions (produced via an electron beam) that have wide potential molecular electronics applications. Self-assembled supramolecular structures (of various tessellation) and diamond architectures are also proposed. The authors propose that the periodicity of close repeat units of such structures is most evident not only in these formations but also present in all of the carbon allotropes. It is also shown that depending on the lattice tessellation, heteroatom type, and/or doping, metal nanostructures (nanotubes in particular) can display both metallic and semiconductor characteristics. Therefore, their properties can be manipulated by chemical functionalization. The authors therefore suggest that nanostructures have heralded a new generation of nanoscale biological, chemical, and physical devices. The text also provides literature and data on the field of nanostructure periodicity and the authors own results on nanostructure building and energy calculations as well as topological characterization by means of counting polynomials of periodic nanostructures. The aromaticity of various coverings of graphitic structures is also discussed. This book is aimed at scientists working in the field of nanoscience and nanotechnology, Ph.D. and MSc. degree students, and others interested in the amazing nanoarchitectures that could inspire the cities of the future."
Advances in nanoscience and nanotechnology promise great technical breakthroughs in the coming decades. In this book, leading scientists, engineers, and social scientists review the possible uses of these impending technical developments in various industrial, medical, and national security applications. They also examine the corresponding ethical, legal, social, economic, and educational issues that these developments raise.
This book is intended for scientists and engineers in the field of micro- and nano electro-mechanical systems (MEMS and NEMS) and introduces the development of cantilever-based sensor systems using CMOS-compatible micromachining from the design concepts and simulations to the prototype. It is also a useful resource for researchers on cantilever sensors and resonant sensors in general The reader will become familiar with the potential of the combination of two technological approaches: IC fabrication technology, notably CMOS technology, and silicon micromachining and the resulting microstructures such as cantilever beams. It was recognized early that these two technologies should be merged in order to make the microstructures smart and devise integrated microsystems with on-chip driving and signal conditioning circuitry - now known as CMOS MEMS or, with the arrival of nanostructures, CMOS NEMS. One way to achieve the merger is the post-processing micro- or nano- machining of finished CMOS wafers, some of which is described in this book. The book introduces this approach based on work carried out at the Physical Electronics Laboratory of ETH Zurich on arrays of cantilever transducers with on-chip driving and signal conditioning circuitry. These cantilevers are familiar from Scanning Probe Microscopy (SPM) and allow the sensitive detection of phys ical quantities such as forces and mass changes. The book is divided into three parts. First, general aspects of cantilever resona tors are introduced, e. g. their resonant behavior and possible driving and sensing mechanisms."
Intensive investigations on nanoscale magnetism have promoted remarkable progressintechnologicalapplicationsofmagnetisminvariousareas.Thete- nical progress of recent years in the preparations of multilayer thin ?lms and nanowires led to the discovery of Giant Magnetoresistance (GMR), imp- ing an extraordinary change in the resistivity of the material by varying the applied external magnetic ?eld. The Nobel Prize for Physics in 2007 was awardedtoAlbertFertandPeterGrun ] bergfortheirdiscoveryofGMR.App- cations of this phenomenon have revolutionizedtechniques for retrieving data fromharddisks.Thediscoveryalsoplaysamajorroleinvariousmagnetics- sors as well as the development of a new generation of electronics. The use of GMRcanberegardedasoneofthe?rstmajorapplicationsofnanotechnology. The GMR materials have already found applications as sensors of low magnetic ?eld, a key component of computer hard disk heads, magnetores- tive RAM chips etc. The "read" heads for magnetic hard disk drives have allowed us to increase the storage density on a disk drive from 1 to 20 Gbit per square inch, merely by the incorporation of the new GMR materials. On the other hand, recently discovered giant magneto-impedance (GMI) mate- als look very promising in the development of a new generation of microwave band electronic devices (such as switches, attenuators, and antennas) which could be managed electrically."
Nanocomposites have been receiving more and more attention given the improvement of synthesis techniques and the availability of powerful characterization techniques. The aim of the book is to introduce nanocomposite materials using a broad range of inorganic and organic solids. Furthermore, it is intended to present recent and not very common developments in especially spectroscopic characterization techniques, including Mossbauer, EXAFS, NMR. This should make the book attractive for a broad range of readers, including chemists and physicists."
This book gives a theoretical description of linear and nonlinear optical responses of matter with special emphasis on the microscopic and 'nonlocal' nature of resonant response. It will have a tremendous influence on modern device techniques, as it deals with frontier research in response theory.
The first volume in the series was released in January 2004 and the second to fourth volumes in early 2006. The field is now progressing so fast that there is a need for one volume every 12 to 18 months to capture latest developments. Volume VI presents 10 chapters on a variety of new and emerging techniques and refinements of SPM applications.
The volumes VIII, IX and X examine the physical and technical foundation for recent progress in applied scanning probe techniques. This is the first book to summarize the state-of-the-art of this technique. The field is progressing so fast that there is a need for a set of volumes every 12 to 18 months to capture latest developments. These volumes constitute a timely comprehensive overview of SPM applications.
This handbook covers the broad scope of nanomedicine. Starting with the basics, the subject is developed to potential clinical applications, many of which are still at an experimental stage. The book features extensive coverage of nanodiagnostics and nanopharmaceuticals, which are two important components of nanomedicine. Written by a physician-scientist author who blends his clinical experience and scientific expertise in new technologies, this book provides a definitive account of nanomedicine. It offers more up-to-date and comprehensive coverage of nanomedicine than any other comparable work.
Nanofabrication and nanotechnology present a great challenge to engineers and researchers as they manipulate atoms and molecules to produce single artifacts and submicron components and systems. Micro and Nanomanufacturing provides a comprehensive treatment of established micro and nanofabrication techniques and addresses the needs of practicing manufacturing engineers by applying established and research laboratory manufacturing techniques to a wide variety of materials. Engineers seeking more knowledge of how nano and micro devices are designed and fabricated will learn about: Manufacturing and fabrication techniques at the micro and nanoscales; Using bulk and surface micromachining techniques, LiGA, and deep x-ray lithography to manufacture semiconductors; Producing master molds with micromachining; The deposition of thin films, pulsed water drop machining, and nanomachining. Mark J. Jackson is an Associate Professor in the Department of Mechanical Engineering Technology at Purdue University. His current research focuses on understanding the properties of materials in the field of micro scale metal cutting, micro and nano abrasive machining, and laser micro machining.
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Hard disk drive systems are ubiquitous in today's computer systems and the technology is still evolving. There is a review of hard disk drive technology and construction in the early pages of this monograph that looks at the characteristics of the disks and there it can be read that: "bit density... continues to increase at an amazing rate", "spindle speed... the move to faster and faster spindle speeds continue", "form factors... the trend...is downward... to smaller and smaller drives", "performance... factors are improving", "redundant arrays of inexpensive disks... becoming increasingly common, and is now seen in consumer desktop machines", "reliability... is improving slowly... it is very hard to improve the reliability of a product when it is changing rapidly" and finally "interfaces... continue to create new and improved standards... to match the increase in performance of the hard disks themselves".
This book describes Microelectromechanical systems (MEMS) technology and demonstrates how MEMS allow miniaturization, parallel fabrication, and efficient packaging of optics, as well as integration of optics and electronics. The book shows how the characteristics of MEMS enable practical implementations of a variety of applications, including projection displays, fiber switches, interferometers, and spectrometers. The authors conclude with an up-to-date discussion of the need for the combination of MEMS and Photonic crystals.
Timekeeping is an essential activity in the modern world and we
take it for granted that our lives our shaped by the hours of the
day. Yet what seems so ordinary today is actually the extraordinary
outcome of centuries of technical innovation and circulation of
ideas about time.
Making a clear distinction is made between nano- and micro-mechanical testing for physical reasons, this monograph describes the basics and applications of the supermicroscopies AFM and SNOM, and of the nanomechanical testing on rough and technical natural surfaces in the submicron range down to a lateral resolution of a few nm. New or improved instrumentation, new physical laws and unforeseen new applications in all branches of natural sciences (around physics, chemistry, mineralogy, materials science, biology and medicine) and nanotechnology are covered as well as the sources for pitfalls and errors. It outlines the handling of natural and technical samples in relation to those of flat standard samples and emphasizes new special features. Pitfalls and sources of errors are clearly demonstrated as well as their efficient remedy when going from molecularly flat to rough surfaces. The academic or industrial scientist learns how to apply the principles for tackling their scientific or manufacturing tasks that include roughness far away from standard samples.
Micromanufacturing and Nanotechnology is an emerging technological infrastructure and process that involves manufacturing of products and systems at the micro and nano scale levels. Development of micro and nano scale products and systems are underway due to the reason that they are faster, accurate and less expensive. Moreover, the basic functional units of such systems possesses remarkable mechanical, electronic and chemical properties compared to the macro-scale counterparts. Since this infrastructure has already become the prefered choice for the design and development of next generation products and systems it is now necessary to disseminate the conceptual and practical phenomenological know-how in a broader context. This book incorporates a selection of research and development papers. Its scope is the history and background, underlynig design methodology, application domains and recent developments.
Overview of recent achievements, describing the microactuator development of microvalves and liner actuators comprehensively from concept through prototype. Further key aspects included are three-dimensional models for handling complex SMA actuator geometries and coupled simulation routines that take multifunctional properties into account. Mechanical and thermal optimization criteria are introduced for actuator design, allowing an optimum use of the shape memory effect. It is shown that some of the prototypes presented, e.g. SMA microgrippers, already outperform conventional components.
Inelastic media constitute a rich source of interesting and important problems in theoretical, experimental and computationalmechanics. Signi?cantinsightshavebeengainedthroughstudiesofthemathematicalchar- teristics of new models. New constitutive theories have lead to variational and other formulations that are generally more complex, often highly nonlinear, and requ- ing new tools for their successful resolution. Likewise, there have been signi?cant advances of a computational nature, coupled to the development of new algorithms for solving such problems in discrete form. It is clear, therefore, that research in the broad area of inelastic media offers c- temporary investigators a range of challenges which are most fruitfully addressed througha combinationof theoretical, experimentaland computationalavenues.F- thermore, the ?eld is truly multidisciplinary in nature, drawing on the expertise of specialists in materials science, various branches of engineering, mathematics, and physics, and bene?ting from integrative approaches to the solution of problems. The objective of the IUTAM Symposium on Theoretical, Modelling and C- putational Aspects of Inelastic Media, held in Cape Town over the period 14-18 January 2008, was to provide a forum in which experts engaged in a spectrum of activities underthe theme of inelastic media could discussrecent developments, and also identify key open problem
This book addresses Lab-on-a-Chip devices. It focuses on microfluidic technologies that have emerged in the past decade. Coverage presents a comprehensive listing of the most promising microfluidic technologies in the Lab-on-a-Chip field. It also details technologies that can be viewed as toolboxes needed to set up complex Lab-on-a-Chip systems. |
![]() ![]() You may like...
Economics of Information Security
L. Jean Camp, Stephen Lewis
Hardcover
R4,528
Discovery Miles 45 280
Secure Multi-Party Non-Repudiation…
Jose A. Onieva, Jianying Zhou
Hardcover
R2,879
Discovery Miles 28 790
The Manager's Handbook for Corporate…
Gerald L. Kovacich, Edward Halibozek
Hardcover
Hardware IP Security and Trust
Prabhat Mishra, Swarup Bhunia, …
Hardcover
R4,721
Discovery Miles 47 210
|