![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture
This volume of the Lecture Notes in Mobility series contains papers written by speakers at the 22nd International Forum on Advanced Microsystems for Automotive Applications (AMAA 2018) "Smart Systems for Clean, Safe and Shared Road Vehicles" that was held in Berlin, Germany in September 2018. The authors report about recent breakthroughs in electric and electronic components and systems, driver assistance, vehicle automation and electrification as well as data, clouds and machine learning. Furthermore, innovation aspects and impacts of connected and automated driving are covered. The target audience primarily comprises research experts and practitioners in industry and academia, but the book may also be beneficial for graduate students alike.
This book presents the latest achievements in the theory and practice of SEMS Group interaction by scientists from the Russian Academy of Sciences. It also discusses the development of methods for the design and simulation of SEMS Group interaction based on the principles of safety, flexibility and adaptability in behavior and intelligence and parallelism in information processing, computation and control. Recently, the task has been to ensure the functioning of robots within the framework of collective collaboration, so that they function efficiently, reliably and safely in real time. The topics covered include, but are not limited to, the following: - the planning behavior of the SEMS group;- methods and principles of designing of automatic control systems;- mathematical and computer modeling group interaction;- safety, flexibility and adaptability of the SEMS Group;- information-measuring soft- and hardware. This book is intended for students, scientists and engineers specializing in the field of smart electromechanical systems and robotics.
This textbook on quantum mechanics has been designed for use in two-semester undergraduate courses. It describes the basic concepts of quantum mechanics, explains the use of the mathematical formalism and provides illustrative examples of both concepts and methods. Although the aim is to enable students to master the use of quantum mechanics as a tool, the author also discusses the meaning of quantum concepts. To this end the book contains a variety of relevant examples, worked out in considerable detail, as well as a substantial number of pertinent problems and exercises. The latter will be extremely helpful, if not essential, for gaining a deep understanding and command of the subject. This book is based on the author's thirty years experience of teaching the subject.
This book discusses the ultrasonic synthesis, characterization and application of various nanoparticles, as well as the ultrasonic synthesis of metal and inorganic nanoparticles such as noble metals, transition metals, semiconductors, nanocomposites, alloys and catalysts. In addition, it describes the engineering of micro- and nanosystems using ultrasound-responsive biomolecules. In acoustic cavitation, unique phenomena based on bubbles dynamics, extreme high-temperature and pressure conditions, radical reactions, extreme heating and cooling rates, strong shockwaves, and microstreaming are generated, and under certain conditions, mist generation (atomization of a liquid) is effectively induced by ultrasonic irradiation. These unique phenomena can be used to produce various high-performance functional metal and inorganic nanoparticles. Nanoparticles and nanomaterials are key materials in advancing nanotechnology and as such ultrasound and sonochemical techniques for producing nanoparticles and nanomaterials have been actively studied for the last two decades. Although a few professional books related to "ultrasound" and "nanomaterials" have been published, these mainly target professional researchers. This book covers this topic in a way that appeals to graduate students, researchers and engineers.
Nanosensors are rapidly becoming a technology of choice across diverse fields. They offer effective and affordable options for detecting and measuring chemical and physical properties in difficult-to-reach biological and industrial systems operating at the nanoscale. However, with nanosensor development occurring in so many fields, it has become difficult to stay current with the latest research and emerging applications. NANOSENSORS: Theory and Applications in Industry, Healthcare and Defense answers the need for a comprehensive resource on advances in this area. Dr. Teik-Cheng Lim, a highly regarded expert in novel materials and nanosensors crosses disciplines to bring together 17 pioneering experts who address the fundamental principles of nanosensors and their diverse applications. Serving to stimulate a convergence of information across otherwise isolated disciplines, this volume covers - Carbon-nanotube (CNT)-based sensors and their uses with a range of analytes, including gaseous molecules, organic charge transfer complexes, proteins, DNA, and antibodies CNT-based fluidic sensors for studying the shear stress of blood vessels and cells, useful in diagnosing many diseases Nanomechanical cantilever sensors, which offer low cost, fast response, and high specificity without the need for pre-analysis labeling Layer-by-layer (LbL) self-assembly and the Langmuir- Blodgett (LB) technique, highly efficient approaches when working with expensive biological compounds Fluorescence resonance energy for intracellular glucose monitoring Noble metal nanoparticles with their unique optical properties as colorimetric probes for biological analysis Optical capillary sensors as an affordable tool for classifying liquid samples Nanosensors in bioinformatics and their role in a much needed systems approach to healthcare With so much activity occurring in so many fields, further progress in the area of nanosensors is certain. Through the convergence of findings across many fields, as exemplified by this book, that progress can be accelerated.
These proceedings gather contributions presented at the 3rd International Conference of Mechatronics and Cyber-MixMechatronics/ICOMECYME, organized by the National Institute of R&D in Mechatronics and Measurement Technique in Bucharest, Romania, on September 5th-6th, 2019. Reflecting the expansion mechatronics, it discusses topics in the newer trans-disciplinary fields, such as adaptronics, integronics, and cyber-mixmechatronics. With a rich scientific tradition and attracting specialists from around the globe - including North America, South America, and Asia - ICOMECYME focuses on presenting the latest research. It is mainly directed at academics and advanced students, but also appeals to R&D experts, offering a platform for scientific exchange. These proceedings are a valuable resource for entrepreneurs who want to invest in research and who are open for collaborations.
This book presents some of the recent hybrid micro-machining processes used to manufacture miniaturized products with micro level precision. The current developed technologies to manufacture the micro dimensioned products while meeting the desired precision level are described within the text. The authors especially highlight research that focuses on the development of new micro machining platforms while integrating the different technologies to manufacture the micro components in a high throughput and cost effective manner.
Mechanics of Biological Systems & Micro-and Nanomechanics, Volume 4 of the Proceedings of the 2018 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the fourth volume of eight from the Conference, brings together contributions to important areas of research and engineering. The collection presents early findings and case studies on a wide range of topics, including: Cell Mechanics & Traumatic Brain Injury Micromechanical Testing Adhesion and Fracture MEMS Devices and Technology Nano-scale Deformation Mechanisms 1D & 2D Materials Tribology & Wear Research and Applications in Progress
This book explores the fabrication of soft material and biomimetic MEMS sensors, presents a review of MEMS/NEMS energy harvesters and self-powered sensors, and focuses on the recent efforts in developing flexible and wearable piezoelectric nanogenerators. It also includes a critical analysis of various energy harvesting principles, such as electromagnetic, piezoelectric, electrostatic, triboelectric, and magnetostrictive. This multidisciplinary book is appropriate for students and professionals in the fields of material science, mechanical engineering, electrical engineering, and bioengineering.
This contributed volume presents new insight into sustainable possibilities of combination of nanomaterial and bioenergy production together. Biofuels as renewable energy sources have tremendous potential to replace fossil fuels in future energy scenario as biofuels production is likely to be advanced and novel research areas offers green alternative energy sources. continuous efforts are being made for the cost-effective production of biofuels worldwide to balance its techno-economy. In series of tremendous effort to improve biofuels production technologies, use of nanomaterials to improve biofuels production efficiency is highly emerging area with full scope to developed low cost, rapid technologies for biofuels production. The book covers the practical utility based properties of nanomaterial and bioenergy production together. It also discusses the recent advancements on various nanomaterial utility in biofuel production process along with its low cost application. It covers mega audiences, which include academician, researchers, and industries people. This book will be highly interesting for researchers and scientists as well as related industries.
Omar Abu Mohareb proposes a novel dynamic inductor control (DIC) that can be generally applied to various DC-DC converter types. The aim is to improve the converter efficiency throughout controlling the inductance value at all operating points without consequential complexity or increase in the inductor cost and size. The dynamic inductor control implies the maximum energy transfer (MET) concept to improve the DC-DC converter efficiency and preserve a fast system dynamics against load changes at the same time.About the Author: Omar Abu Mohareb has earned his doctoral degree in Automotive Mechatronics Engineering from University of Stuttgart. He is now active in electromobility field and its efficient and smart infrastructure concepts. He has also earned his first patent on the proposed dynamic inductor control (DIC) concept.
This book focuses on nanocarbons (carbon nanotubes, graphene, nanoporous carbon, and carbon black) and related materials for energy conversion, including fuel cells (predominately proton exchange membrane fuel cells [PEMFC]), Li-ion batteries, and supercapacitors. Written by a group of internationally recognized researchers, it offers an in-depth review of the structure, properties, and functions of nanocarbons, and summarizes recent advances in the design, fabrication and characterization of nanocarbon-based catalysts for energy applications. As such, it is an invaluable resource for graduate students, academics and industrial scientists interested in the areas of nanocarbons, energy materials for fuel cells, batteries and supercapacitors as well as materials design, and supramolecular science.
This book presents the topology optimization theory for laminar flows with low and moderate Reynolds numbers, based on the density method and level-set method, respectively. The density-method-based theory offers efficient convergence, while the level-set-method-based theory can provide anaccurate mathematical expression of the structural boundary. Unsteady, body-force-driven and two-phase properties are basic characteristics of the laminar flows. The book discusses these properties, which are typical of microfluidics and one of the research hotspots in the area of Micro-Electro-Mechanical Systems (MEMS), providing an efficient inverse design approach for microfluidic structures. To demonstrate the applications of this topology optimization theory in the context of microfluidics, it also investigates inverse design for the micromixer, microvalve and micropump, which are key elements in lab-on-chip devices.
This book explores the new materials and the resultant new field of piezotronics. The growth and alignment of the zinc oxide nanostructures are discussed in detail because of its wide adoption in this field and its significance in optics, health, and sensing applications. The characterization of the piezotronic effect and how to distinguish it from other similar but, fundamentally different effects, like piezoresistive effect is also considered. The huge potential in the wearable and flexible devices, as well as organic materials, is further examined. The stain/stress sensing is introduced as an example of an application with piezotronic materials.
This thesis focuses on the nanomanufacturing of graphene-a newly discovered, two-dimensional material with extraordinary properties-in order to realize its numerous potential applications. Combining experimental implementation with theoretical modelling, it investigates three classes of graphene nanostructure fabrication using particle beam irradiation: (i) doping of graphene using low energy nitrogen irradiation; (ii) joining of graphene sheets with laser and C, N, and Ar ion beam irradiation; and (iii) fabrication of graphene nanopores by means of focused ion beam and electron beam irradiation. The feasibility of the nanomanufacture of graphene using particle beam irradiation is demonstrated by various experimental methods, and the mechanisms involved under different types of beam irradiation are revealed using theoretical calculations. Further, the book analyzes the mechanical and electrical properties of the fabricated graphene nanostructures by means of atomic simulations to predict the application potentials of the proposed methods. The findings help promote the implementation of graphene-structure applications in industry.
This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features selected peer-reviewed contributions from participants in the 4th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2016) held in Lviv, Ukraine on August 24-27, 2016. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, Ivan Franko National University of Lviv (Ukraine), University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications.
This book provides a general formalism for the calculation of the spectral correlation function for the fluctuating electromagnetic field. The procedure is applied to the radiative heat transfer and the van der Waals friction using both the semi-classical theory of the fluctuating electromagnetic field and quantum field theory. Applications of the radiative heat transfer and non-contact friction to scanning probe spectroscopy are presented. The theory gives a tentative explanation for the experimental non-contact friction data. The book explains that radiative heat transfer and the van der Waals friction are largely enhanced at short separations between the bodies due to the evanescent electromagnetic waves. Particular strong enhancement occurs if the surfaces of the bodies can support localized surface modes like surface plasmons, surface polaritons or adsorbate vibrational modes. An electromagnetic field outside a moving body can also be created by static charges which are always present on the surface of the body due to inhomogeneities, or due to a bias voltage. This electromagnetic field produces electrostatic friction which can be significantly enhanced if on the surface of the body there is a 2D electron or hole system or an incommensurate adsorbed layer of ions exhibiting acoustic vibrations.
Many clock repairers carry out excellent work but avoid cutting their own wheels and pinions, fearing it is too complicated and involved. This book, written by an experienced clock and tool maker, dispels those fears and gives a step-by-step guide to an extremely satisfying aspect of horology. This book is written for both the amateur and professional involved in the making and restoring of clocks, and for anyone who intends to start building up a workshop and requires a guide to the equipment and how to use it.
This brief highlights recent research advances in the area of nano-therapeutics. Nanotechnology holds immense potential for application in a wide range of biological and engineering applications such as molecular sensors for disease diagnosis, therapeutic agents for the treatment of diseases, a vehicle for delivering therapeutics and imaging agents for theranostic applications, both in-vitro and in-vivo. The brief is grouped into the following sections namely, A) Discrete Nanosystems ; B) Anisotropic Nanoparticles; C) Nano-films/coated/layered and D) Nano-composites.
This book reveals how polymer blending and grafting now offer a growing range of new applications for advanced films and fibers. Further, it details how the processing and original physical properties of cellulosics can be improved, and demonstrates how new, cellulose-core polymeric materials offer a wide range of synergistic functionalities. Lastly, it summarizes basic characterization studies and successful fabrications of advanced films and fibers. The book is primarily intended for advanced undergraduates, academic and industrial researchers and professionals studying or using bio-based polymers.
This book focuses on nanorobotic agents and stem cells for biomedical applications.It is intended for researchers and clinicians interested in innovative diagnostic and therapeutic strategies based on nanorobots and stem cells.It presents current advances in the field of molecular machines, which could be applied to generate novel therapeutic-diagnostic systems.
This Brief presents a complete study of the generalized theory of Foerster-type energy transfer in nanostructures with mixed dimensionality. Here the aim is to obtain a generalized theory of FRET including a comprehensive set of analytical equations for all combinations and configurations of nanostructures and deriving generic expressions for the dimensionality involved. In this brief, the modification of FRET mechanism with respect to the nanostructure serving as the donor vs. the acceptor will be included, focusing on the rate's distance dependency and the role of the effective dielectric function in FRET, which will be a unique, useful source for those who study and model FRET.
This Brief will focus on the functional uses and applications of FRET, starting with the derivation of FRET in the assemblies of nanostructures and subsequently giving application cases for biologists, physicists, chemists, material scientists, engineers, and those in many other fields whoever would like to FRET as a tool. The goal of this part is therefore to show both specialist and non-specialist how to use and analyze FRET in a wide range of applications.
Nanotechnology in Dermatology is the first book of its kind to address all of the important and rapidly growing aspects of nanotechnology as it relates to dermatology. In the last few years there has been an explosion in research and development for products and devices related to nanotechnology, including numerous applications for consumers, physicians, patients, and industry. Applications are underway in medicine and dermatology for the early detection, diagnosis, and targeted therapy of disease, and nanodesigned materials and devices are expected to be faster, smaller, more powerful, more efficient, and more versatile than their traditional counterparts. Written by experts working in this exciting field, Nanotechnology in Dermatology specifically addresses nanotechnology in consumer skin care products, in the diagnosis of skin disease, in the treatment of skin disease, and the overall safety of nanotechnology. The book also discusses future trends of this ever-growing and changing field, providing dermatologists, pharmaceutical companies, and consumer cosmetics companies with a clear understanding of the advantages and challenges of nanotechnology today.
Finite element analysis is a basic foundational topic that all engineering majors need to understand in order for them to be productive engineering analysts for a variety of industries. This book provides an introductory treatment of finite element analysis with an overview of the various fundamental concepts and applications. It introduces the basic concepts of the finite element method and examples of analysis using systematic methodologies based on ANSYS software. Finite element concepts involving one-dimensional problems are discussed in detail so the reader can thoroughly comprehend the concepts and progressively build upon those problems to aid in analyzing two-dimensional and three-dimensional problems. Moreover, the analysis processes are listed step-by-step for easy implementation, and an overview of two-dimensional and three-dimensional concepts and problems is also provided. In addition, multiphysics problems involving coupled analysis examples are presented to further illustrate the broad applicability of the finite element method for a variety of engineering disciplines. The book is primarily targeted toward undergraduate students majoring in civil, biomedical, mechanical, electrical, and aerospace engineering and any other fields involving aspects of engineering analysis. |
![]() ![]() You may like...
Reconfigurable Switched-Capacitor Power…
Dongsheng Ma, Rajdeep Bondade
Hardcover
R2,873
Discovery Miles 28 730
The Science of Evil - On Empathy and the…
Simon Baron-Cohen
Paperback
The Economic Geography of the Car Market…
Bartlomiej Kolsut, Tadeusz Stryjakiewicz
Hardcover
R4,476
Discovery Miles 44 760
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet
Paperback
|