![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture
This book provides a comprehensive overview of the field of functional finishing of textiles, describing the state-of-the-art research and well-established techniques applied in the textile industry, and covering all areas of textile dyeing and finishing. It is intended for academic researchers and professionals in related scientific and engineering fields, including textile engineering, chemistry, nanotechnology, material science, biotechnology and environmental science. The book also provides reference material for stakeholders looking for innovative technologies and insights into the environmental and sustainability issues in the development of functional textiles and related products.
This book covers novel and innovative technologies used in development, modeling, chemical/physical investigation and biomedical (in-vitro and in-vivo) trials of nanomaterials and nanocomposites. Novel methods for nanoparticle development and manufacturing are presented, as well as their safety and promising applications. In addition, the book highlights new frontiers in the use of metal / metal oxide nanoparticles, hierarchical nanostructures and organic coatings as sensors for detecting gases, inorganic and organic materials, including biosensors for bacteria and cancers. Organic nanoparticle composites for medical applications (tissue engineering, tissue replacement, regeneration, etc.), including hydroxyapatite NPs, are also covered, together with related in-vitro and preclinical investigations. In closing, the book shares recent findings on orthopedic and dental implant coatings using nanoparticles, their biological efficacy and safety.
This book provides a comprehensive overview of the state-of-the-art in the development of semiconductor nanostructures and nanophotonic devices. It covers epitaxial growth processes for GaAs- and GaN-based quantum dots and quantum wells, describes the fundamental optical, electronic, and vibronic properties of nanomaterials, and addresses the design and realization of various nanophotonic devices. These include energy-efficient and high-speed vertical cavity surface emitting lasers (VCSELs) and ultra-small metal-cavity nano-lasers for applications in multi-terabus systems; silicon photonic I/O engines based on the hybrid integration of VCSELs for highly efficient chip-to-chip communication; electrically driven quantum key systems based on q-bit and entangled photon emitters and their implementation in real information networks; and AlGaN-based deep UV laser diodes for applications in medical diagnostics, gas sensing, spectroscopy, and 3D printing. The experimental results are accompanied by reviews of theoretical models that describe nanophotonic devices and their base materials. The book details how optical transitions in the active materials, such as semiconductor quantum dots and quantum wells, can be described using a quantum approach to the dynamics of solid-state electrons under quantum confinement and their interaction with phonons, as well as their external pumping by electrical currents. With its broad and detailed scope, this book is indeed a cutting-edge resource for researchers, engineers and graduate-level students in the area of semiconductor materials, optoelectronic devices and photonic systems.
Written by the inventors and leading experts of this new field, the book results from the International Symposium on "Atomic Switch: Invention, Practical use and Future Prospects" which took place in Tsukuba, Japan on March 27th - 28th, 2017. The book chapters cover the different trends from the science and technology of atomic switches to their applications like brain-type information processing, artificial intelligence (AI) and completely novel functional electronic nanodevices. The current practical uses of the atomic switch are also described. As compared with the conventional semiconductor transistor switch, the atomic switch is more compact (~1/10) with much lower power consumption (~1/10) and scarcely influenced by strong electromagnetic noise and radiation including cosmic rays in space (~1/100). As such, this book is of interest to researchers, scholars and students willing to explore new materials, to refine the nanofabrication methods and to explore new and efficient device architectures.
This book presents a complete framework for energy harvesting technologies based on graded elastic metamaterials. First, it provides a comprehensive survey of state-of-the-art research on metamaterials for energy harvesting and then explores the theoretical wave mechanics framework, going from inhomogeneous media to graded elastic metamaterials. The framework can be used to thoroughly analyse wave propagation phenomena in beams, plates, and half-spaces and to investigate the effect of local resonance on creating bandgaps or wave mode conversions. All these concepts converge together with piezoelectric materials in the study and design of piezo-augmented arrays of resonators. The energy harvesting performances of the graded metamaterials are then compared to conventional solutions, in order to quantify their advantages for applications.
This book presents the latest advances and future trends in electron and phonon spectrometrics, focusing on combined techniques using electron emissions, electron diffraction, and phonon absorption and reflection spectrometrics from a substance under various perturbations to obtain new information on bond-electron-phonon dynamics. Discussing the principles of the bond order-length-strength (BOLS) correlation, nonbonding electron polarization (NEP), local bond average (LBA), and multi-field lattice oscillation dynamics for systems under perturbation, the book covers topics like differential photoelectron/phonon spectrometrics (DPS), which distils transition of the length, energy, stiffness and the fraction of bonds upon chemical or physical conditioning; and the derived performance of electrons in various bands in terms of quantum entrapment and polarization. This book appeals to researchers, scientists and engineers in the fields of chemistry, physics, surface and interface science, and materials science and engineering who are interested in electron and phonon spectrometrics.
This book bridges the gap between the demand for micro-featured components on the one hand, and successful micromachining of miniature products on the other. In addition to covering micromachining in the broader sense, it specifically addresses novel machining strategies implemented in various advanced micromachining processes to improve machining accuracy, energy consumption, component durability, and miniature-scale applicability. The book's main goal is to present the capabilities of advanced micromachining processes in terms of miniature product manufacturing by highlighting various innovative machining strategies that can be used to augment the production scale and precision alike.
This book addresses the fundamental challenges underlying bioelectronics and tissue interface for clinical investigation. Appropriate for biomedical engineers and researchers, the authors cover topics ranging from retinal implants to restore vision, implantable circuits for neural implants, and intravascular electrochemical impedance to detect unstable plaques. In addition to these chapters, the authors also document the approaches and issues of multi-scale physiological assessment and monitoring in both humans and animal models for health monitoring and biological investigations; novel biomaterials such as conductive and biodegradable polymers to be used in biomedical devices; and the optimization of wireless power transfer via inductive coupling for batteryless and wireless implantable medical devices. In addition to engineers and researchers, this book is also an ideal supplementary or reference book for a number of courses in biomedical engineering programs, such as bioinstrumentation, MEMS/BioMEMS, bioelectronics and sensors, and more. Analyzes and discusses the electrode-tissue interfaces for optimization of biomedical devices. Introduces novel biomaterials to be used in next-generation biomedical devices. Discusses high-frequency transducers for biomedical applications.
This is the first book portraying to a wide readership many fields of DNA in the world of materials altogether in a single volume. The book provides underlying concepts and state-of-art developments in the emerging fields of DNA electronics, structural DNA nanotechnology, DNA computing and DNA data storage, DNA machines and nanorobots. Future possibilities of innovative DNA-based technologies, such as DNA cryptography, DNA identity tags, DNA nanostructures in biosensing and nanomedicine, as well as DNA-based nanoelectronics are all covered, too. This book is valuable for university students studying engineering and technology; biotech, nanotech, and medical device R&D managers, practitioners and investors; and IP analysts who would like to extend their background in advanced DNA technologies. It is nicely illustrated, which makes it very readable, and it conveys science and principles in a lively language to appeal to a broad audience, from professionals and academics to students and lay readers. Advance Praise for DNA Beyond Genes: "Most students of DNA, and lay readers as well, are interested in the absolutely essential role it plays in biology. However, the properties which make DNA the carrier of genetic information also make it an extraordinary material that can be used as the backbone for a wide variety of nanoengineering applications - these range from information storage and computation to molecular machines and devices to artfully designed logos and symbols. The perfect self-recognition of DNA sequences makes it an ideal building block to synthesize more and more elaborate constructions and imaginative scientists have probably only just scratched the surface of what can eventually be created. Here for the first time in this wonderful book Vadim Demidov explores the full range of the non-biological applications of DNA." Charles R. Cantor Professor Emeritus of Biomedical Engineering, Boston University Member of the USA National Academy of Sciences
This book highlights the role of nanotechnology concepts in the management of COVID-19 pandemic. The book covers different aspects of the causative agent SARS CoV2 (Severe Acute Respiratory Syndrome Coronavirus-2) and the COVID-19 pandemic with a special emphasis on nanotechnology. It discusses the origin and history of SARS CoV2 and the outbreak of COVID-19 and highlights the geographical mutations in the SARS CoV2 virus genome, providing information about the structural features, antigenicity and the life cycle of SARS CoV2. The book provides an insight into nanotechnology-virology interface and explains how nanomaterials link the gap between the vital phases of SARS CoV2 life cycle and the four modalities of COVID-19 management viz sensing/diagnosis, therapy, prevention and self-protection. Further, the existing and promising diagnostic tools for detection of COVID-19 are discussed with an emphasis on nano PCR, nanoimmunosensors, biobarcode assay and point of care approach and also describe the nanoparticles involved in the CT imaging of lungs and SFHI (Spatial Frequency Hetrodyne Imaging) for diagnosis of SARS COV2 infection. The book concludes with details about translational medicine and explains the types of SARS CoV2 vaccines, stages of COVID-19 vaccine development and possible nanovaccines for COVID-19, followed by the description on biopharmaceutical companies involved in the production of SARS CoV2 vaccines.
This book provides an overview of the experimental characterization of materials and their numerical modeling, as well as the development of new computational methods for virtual design. Its 17 contributions are divided into four main sections: experiments and virtual design, composites, fractures and fatigue, and uncertainty quantification. The first section explores new experimental methods that can be used to more accurately characterize material behavior. Furthermore, it presents a combined experimental and numerical approach to optimizing the properties of a structure, as well as new developments in the field of computational methods for virtual design. In turn, the second section is dedicated to experimental and numerical investigations of composites, with a special focus on the modeling of failure modes and the optimization of these materials. Since fatigue also includes wear due to frictional contact and aging of elastomers, new numerical schemes in the field of crack modeling and fatigue prediction are also discussed. The input parameters of a classical numerical simulation represent mean values of actual observations, though certain deviations arise: to illustrate the uncertainties of parameters used in calculations, the book's final section presents new and efficient approaches to uncertainty quantification.
Part I introduces the basic "Principles and Methods of Force Measurement" according to a classification into a dozen of force transducerstypes: resistive, inductive, capacitive, piezoelectric, electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic (Hall-effect), vibrating wires, (micro)resonators, acoustic and gyroscopic. Two special chapters refer to force balance techniques and to combined methods in force measurement. Part II discusses the "(Strain Gauge) Force Transducers Components", evolving from the classical force transducer to the digital / intelligent one, with the incorporation of three subsystems (sensors, electromechanics and informatics). The elastic element (EE) is the "heart" of the force transducer and basically determines its performance. A 12-type elastic element classification is proposed (stretched / compressed column or tube, bending beam, bending and/or torsion shaft, middle bent bar with fixed ends, shear beam, bending ring, yoke or frame, diaphragm, axial-stressed torus, axisymmetrical and voluminous EE), with emphasis on the optimum place of the strain gauges. The main properties of the associated Wheatstone bridge, best suited for the parametrical transducers, are examined, together with the appropriate electronic circuits for SGFTs. The handbook fills a gap in the field of Force Measurement, both experts and newcomers, no matter of their particular interest, finding a lot of useful and valuable subjects in the area of Force Transducers; in fact, it is the first specialized monograph in this inter- and multidisciplinary field.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
This book presents the findings of experimental and theoretical (including first-principles molecular dynamics simulation) studies of nanostructured and nanocomposite metal-based materials, and nanoscale multilayer coatings fabricated by physical or chemical vapor deposition, magnetron sputtering, electrospark alloying, ionic layer absorption, contact melting, and high-current electron beam irradiation. It also discusses novel methods of nanocomposite formation, as well as the structure of the deposited films, coatings and other nanoscale materials, their elemental and phase composition, and their physical-mechanical, tribological, magnetic and electrical properties. Lastly, it explores the influence of a various surface modification methods, such as thermal annealing, pulsed laser modification, and thermomechanical and ultrasonic treatment, as well as different properties of nanostructured films.
This book discusses various challenges and solutions in the fields of operation, control, design, monitoring and protection of microgrids, and facilitates the integration of renewable energy and distribution systems through localization of generation, storage and consumption. It covers five major topics relating to microgrid i.e., operation, control, design, monitoring and protection. The book is primarily intended for electric power and control engineering researchers who are seeking factual information, but also appeals to professionals from other engineering disciplines wanting an overview of the entire field or specific information on one aspect of it. Featuring practical case studies and demonstrating different root causes of large power failures, it helps readers develop new concepts for mitigating blackout issues. This book is a comprehensive reference resource for graduate and postgraduate students, academic researchers, and practicing engineers working in the fields of power system and microgrid.
This book presents fabrication approaches that could be adapted for the high-throughput and low-cost manufacturing of the proposed transparent electrode. It proposes and demonstrates a new type of embedded metal-mesh transparent electrode (EMTE) that offers superior electrical, optical, and mechanical properties. The structure of the EMTE allows thick metal mesh to be used (for high conductivity) without sacrificing surface smoothness. In addition, the embedded structure improves the EMTE's mechanical stability under high bending stress, as well as its chemical stability in ambient environments. These design aspects are then shown to be suitable for larger electrode areas, narrower metal-mesh line widths, and a wide range of materials, and can easily be adapted to produce flexible and even stretchable devices. In closing, the book explores the practical applications of EMTEs in flexible bifacial dye-sensitized solar cells and transparent thin-film heaters, demonstrating their outstanding performance.
This book gathers contributions presented at the 17th International Conference on Biomedical Engineering, held on December 9-12, 2019, in Singapore. It continues the tradition of the previous conference proceedings, thus reporting on both fundamental and applied research. It includes a set of carefully selected chapters reporting on new models and algorithms and their applications in medical diagnosis or therapy. It also discusses advances in tele-health and assistive technologies, as well as applications of nanotechnologies. Organized jointly by the Department of Biomedical Engineering of the National University of Singapore and the Biomedical Engineering Society (Singapore), this book offers a timely snapshot of innovative research and technologies and a source of inspiration for future developments and collaborations in the field of biomedical engineering.
This book covers several futuristic computing technologies like quantum computing, quantum-dot cellular automata, DNA computing, and optical computing. In turn, it explains them using examples and tutorials on a CAD tool that can help beginners get a head start in QCA layout design. It discusses research on the design of circuits in quantum-dot cellular automata (QCA) with the objectives of obtaining low-complexity, robust designs for various arithmetic operations. The book also investigates the systematic reduction of majority logic in the realization of multi-bit adders, dividers, ALUs, and memory.
This book describes the future of microscopically small medical devices and how to locate a lab to start conducting your own do-it-yourself microelectromechanical systems (MEMS) research in one of the many national, international, government, and other regional open use facilities, where you can quickly begin designing and fabricating devices for your applications. You will learn specific, tangible information on what MEMS are and how a device is fabricated, including what the main types of equipment are in these facilities. The book provides advice on working in a cleanroom, soft materials, collaboration, intellectual property and privacy issues, regulatory compliance, and how to navigate other issues that may arise. This book is primarily aimed at researchers and students who work at universities without MEMS facilities, and small companies who need access to MEMS resources.
Microbial Nanobionics: Volume 1, State of the Art, discusses a wide range of microbial systems and their utilization in biogenic synthesis of metallic nanoparticles. The rich biodiversity of microbes makes them excellent candidates for potential nanoparticle synthesis biofactories. Through a better understanding of the biochemical and molecular mechanisms of the microbial biosynthesis of metal nanoparticles, the rate of synthesis can be better developed and the monodispersity of the product can be enhanced. The characteristics of nanoparticles can be controlled via optimization of important parameters, such as temperature, pH, concentration and pressure, which regulate microbe growth conditions and cellular and enzymatic activities. Large scale microbial synthesis of nanoparticles is a sustainable method due to the non-hazardous, non-toxic and economical nature of these processes. The applications of microbial synthesis of nanoparticles are wide and varied, spanning the industrial, biomedical and environmental fields. Biomedical applications include improved and more targeted antimicrobials, biosensing, imaging and drug delivery. In the environmental fields, nanoparticles are used for bioremediation of diverse contaminants, water treatment, catalysis and production of clean energy. With the expected growth of microbial nanotechnology, this volume will serve as a comprehensive and timely reference.
This thesis presents various applications of graphene-based nanomaterials, especially in biomedicine. Graphene and its derivatives have gained enormous attention from scientists in all fields of study due to many unprecedented properties. The initial scientific attention was focused on the development of transparent flexible electrodes by exploiting two-dimensional graphene film's extraordinary electrical and physical properties. Recently, given an increasing evidence of dispersed graphene-based nanomaterials' biocompatibility, researchers have endeavored to employ these materials in other studies relevant to biomedical technologies. In this respect, the thesis provides a comprehensive review on the synthesis, toxicity, and a few of the key biomedical applications in the first chapter. The following chapter discusses the use of a graphene film as a novel catalyst to oxidatively destroy phenols, which are known to be potentially mutagenic and carcinogenic. Finally, and most importantly, the last chapter introduces the therapeutic role of graphene quantum dots, the smallest graphene-based nanomaterials, for Parkinson's disease. The results are promising for the use of graphene quantum dots as the basis of future clinical drug candidates for neurodegenerative disorders.
This book presents selected articles from the 2nd International Conference on Nanomaterials and Advanced Composites, which brings together leading researchers and professionals from academia and industry to present their findings and provides a platform for the exchange of ideas and future collaboration. The book covers eight topics, including nanomaterials, polymer materials, mechanical materials, materials chemistry, materials physics, ceramics, recycling materials and green composites.
The major objective of this book is to introduce advanced design and (online) optimization methods for fault diagnosis and fault-tolerant control from different aspects. Under the aspect of system types, fault diagnosis and fault-tolerant issues are dealt with for linear time-invariant and time-varying systems as well as for nonlinear and distributed (including networked) systems. From the methodological point of view, both model-based and data-driven schemes are investigated.To allow for a self-contained study and enable an easy implementation in real applications, the necessary knowledge as well as tools in mathematics and control theory are included in this book. The main results with the fault diagnosis and fault-tolerant schemes are presented in form of algorithms and demonstrated by means of benchmark case studies. The intended audience of this book are process and control engineers, engineering students and researchers with control engineering background.
Mechanics of Biological Systems and Materials & Micro-and Nanomechanics, Volume 4 of the Proceedings of the 2019 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the fourth volume of six from the Conference, brings together contributions to important areas of research and engineering. The collection presents early findings and case studies on a wide range of topics, including: Extreme NanomechanicsIn-Situ NanomechanicsExpanding Boundaries in MetrologyMicro and Nanoscale DeformationMEMS for Actuation, Sensing and Characterization1D & 2D MaterialsCardiac MechanicsCell Mechanics Biofilms and Microbe MechanicsTraumatic Brain InjuryOrthopedic BiomechanicsLigaments and Soft Materials
The thesis tackles one of the most difficult problems of modern nanoscale science and technology - exploring what governs thermal phenomena at the nanoscale, how to measure the temperatures in devices just a few atoms across, and how to manage heat transport on these length scales. Nanoscale heat generated in microprocessor components of only a few tens of nanometres across cannot be effectively fed away, thus stalling the famous Moore's law of increasing computer speed, valid now for more than a decade. In this thesis, Jean Spiece develops a novel comprehensive experimental and analytical framework for high precision measurement of heat flows at the nanoscale using advanced scanning thermal microscopy (SThM) operating in ambient and vacuum environment, and reports the world's first operation of cryogenic SThM. He applies the methodology described in the thesis to novel carbon-nanotube-based effective heat conductors, uncovers new phenomena of thermal transport in two- dimensional (2D) materials such as graphene and boron nitride, thereby discovering an entirely new paradigm of thermoelectric cooling and energy production using geometrical modification of 2D materials. |
You may like...
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet
Paperback
R542
Discovery Miles 5 420
|