![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture
This book presents part of the iM3F 2020 proceedings from the Mechatronics track. It highlights key challenges and recent trends in mechatronics engineering and technology that are non-trivial in the age of Industry 4.0. It discusses traditional as well as modern solutions that are employed in the multitude spectra of mechatronics-based applications. The readers are expected to gain an insightful view on the current trends, issues, mitigating factors as well as solutions from this book.
This book addresses the manufacturing methods, characteristic tubular morphologies, diverse functions, and potent applications of organic tubular architectures prepared or self-assembled from rationally designed molecular building blocks. The hollow cylindrical structures with high-aspect ratios are capable of creating unique functions that can be differentiated from well-known self-assembled nanostructures such as organic nanofibers, nanoribbons, and nanorods. Encapsulation, stabilization, transportation, release, and their cooperative functions pave the way for innovative chemical, physical, biological, and medical applications. The book presents attractive advantages of soft-matter nanotubes, which are also different from well-known hard-matter nanostructures such as carbon nanotubes. The topics and figures in this volume intrigue not only academic researchers but also engineers and university students.
This book presents the mechanics of piezoelectric semiconductor structures where the main electromechanical coupling of interest is the interaction between mechanical fields and semiconduction. This volume stands as the first full book treatment of this multi-physical subject from the mechanics angle. The analysis of piezoelectric semiconductor structures and devices is an emerging and rapidly growing interdisciplinary area involving materials, electronics, and solid mechanics. It has direct applications in the new area of piezotronics and piezo-phototronics. The book is theoretical, beginning with a phenomenological framework and progressing to include solutions to problems fundamental to the theory and application. Dr. Yang illustrates how in piezoelectric semiconductors, mechanical fields interact with semiconduction through the piezoelectrically produced electric fields by mechanical loads. This provides the foundation of piezotronic and piezo-phototronic devices in which semiconduction is induced, affected, manipulated, or controlled by mechanical fields. Also discussing composite structures of piezoelectric dielectrics and nonpiezoelectric semiconductors as well as thermal effects, the book is an ideal basic reference on the topic for researchers.
This book introduces readers to the shell structure, operating principle, manufacturing process, and control theory for cylindrical vibratory gyroscopes. The cylindrical vibratory gyroscope is an important type of Coriolis vibratory gyroscope that holds considerable potential for development and application. The main aspects addressed include: operating principle and structure, theoretical analysis and modeling, dynamic analysis and modeling, manufacturing process, parameter testing methods, closed-loop control, and the error compensation mechanism in cylindrical vibratory gyroscopes.
This book provides state-of-the-art advances in several areas of importance in energy, combustion, power, propulsion, environment using fossil fuels and alternative fuels, and biofuels production and utilization. Availability of clean and sustainable energy is of greater importance now than ever before in all sectors of energy, power, mobility and propulsion. Written by internationally renowned experts, the latest fundamental and applied research innovations on cleaner energy production as well as utilization for a wide range of devices extending from micro scale energy conversion to hypersonic propulsion using hydrocarbon fuels are provided. The tailored technical tracks and contributions from the world renowned technical experts are portrayed in the respective field to highlight different but complementary views on fuels, combustion, power and propulsion and air toxins with special focus on current and future R&D needs and activities. The energy and environment sustainability require a multi-pronged approach involving development and utilization of new and renewable fuels, design of fuel-flexible combustion systems that can be easily operated with the new fuels, and develop novel and environmentally friendly technologies for improved utilization of all kinds of gas, liquid and solid fuels. This volume is a useful book for practicing engineers, research engineers and managers in industry and research labs, academic institutions, graduate students, and final year undergraduate students in Mechanical, Chemical, Aerospace, Energy and Environmental Engineering.
Forewords by Jean-Claude Biver (CEO of Tag Heuer) and Aurel Bacs (Christie's and Phillips auctioneers). This breathtaking book explores more than 50 of the rarest watches in the world, including unique examples of which only a single model exists. From watches that have set new records in auction houses, to feats of modern technology and engineering, via iconic models worn by figures such as Elvis Presley and James Bond, this book appeals to professionals, collectors and amateurs alike. The photography in this book is published in collaboration with high-end auction houses and watch manufacturers, displaying some of the rarest, most expensive and sought-after watches in the world in incredible detail.
This book gathers selected papers from the 16th UK Heat Transfer Conference (UKHTC2019), which is organised every two years under the aegis of the UK National Heat Transfer Committee. It is the premier forum in the UK for the local and international heat transfer community to meet, disseminate ongoing work, and discuss the latest advances in the heat transfer field. Given the range of topics discussed, these proceedings offer a valuable asset for engineering researchers and postgraduate students alike.
This book gathers the proceedings of the 4th International Conference on Mechanical Engineering and Applied Composite Materials (MEACM), held in Beijing, China on October 24-25, 2020. The conference brought together researchers from several countries and covered all major areas of mechanical engineering and applied composite materials, new applications and current trends. The topics covered include: structure and design, mechanical manufacturing and automation, robotics and mechatronics, mechanical behavior of nanomaterials, nanocomposites, and composite mechanics. Given its scope, the book offers a source of information and inspiration for researchers seeking to improve their work and gather new ideas for future developments.
This book addresses the fundamental challenges underlying bioelectronics and tissue interface for clinical investigation. Appropriate for biomedical engineers and researchers, the authors cover topics ranging from retinal implants to restore vision, implantable circuits for neural implants, and intravascular electrochemical impedance to detect unstable plaques. In addition to these chapters, the authors also document the approaches and issues of multi-scale physiological assessment and monitoring in both humans and animal models for health monitoring and biological investigations; novel biomaterials such as conductive and biodegradable polymers to be used in biomedical devices; and the optimization of wireless power transfer via inductive coupling for batteryless and wireless implantable medical devices. In addition to engineers and researchers, this book is also an ideal supplementary or reference book for a number of courses in biomedical engineering programs, such as bioinstrumentation, MEMS/BioMEMS, bioelectronics and sensors, and more. Analyzes and discusses the electrode-tissue interfaces for optimization of biomedical devices. Introduces novel biomaterials to be used in next-generation biomedical devices. Discusses high-frequency transducers for biomedical applications.
This book presents the basic and fundamental aspects of nanomaterials, its types, and classifications with respect to different factors. It contains methods of preparation and characterization of unique nanostructured materials. Consisting of six chapters, this book appeals to a wide readership from academia and industry professionals and is also useful to undergraduate and graduate students focusing on nanotechnology and nanomaterials, sustainable chemistry, energy conversion and storage, environmental protection, opto-electronics, sensors, and surface and interface science. It also appeals to readers who wish to know about the design of new types of materials with controlled nanostructures.
This book brings together selective and specific chapters on nanoscale carbon and applications, thus making it unique due to its thematic content. It provides access to the contemporary developments in carbon nanomaterial research in electronic applications. Written by professionals with thorough expertise in similar broad area, the book is intended to address multiple aspects of carbon research in a single compiled edition. It targets professors, scientists and researchers belonging to the areas of physics, chemistry, engineering, biology and medicine, and working on theory, experiment and applications of carbon nanomaterials.
This book covers the theory, modeling, and implementation of different RF energy harvesting systems. RF energy harvesting is the best choice among the existing renewable energy sources, in terms of availability, cost, size, and integration with other systems. The device used for harvesting RF energy is called rectenna. A rectenna can work at the microwave, millimeter-wave, and terahertz waves. It also has the capability to operate at optical frequencies to be used for 6G and beyond communication systems. This book covers all aspects of wireless power transfer (WPT)/wireless energy harvesting (WEH), basics, theoretical concepts, and advanced developments occurring in the field of energy harvesting. It also covers the design theory for different types of antenna, rectifier, and impedance matching circuits used in RF energy harvesting systems. Different future and present applications, such as charging of vehicles, smart medical health care, self-driven e-vehicles, self-sustainable home automation system, and wireless drones, have also been discussed in detail.
This book presents state-of-the-art coverage of synthesis of advanced functional materials. Unconventional synthetic routes play an important role in the synthesis of advanced materials as many new materials are metastable and cannot be synthesized by conventional methods. This book presents various synthesis methods such as conventional solid-state method, combustion method, a range of soft chemical methods, template synthesis, molecular precursor method, microwave synthesis, sono-chemical method and high-pressure synthesis. It provides a comprehensive overview of synthesis methods and covers a variety of materials, including ceramics, films, glass, carbon-based, and metallic materials. Many techniques for processing and surface functionalization are also discussed. Several engineering aspects of materials synthesis are also included. The contents of this book are useful for researchers and professionals working in the areas of materials and chemistry.
This book presents select proceedings of the International Conference on Advances in Sustainable Technologies (ICAST 2020), organized by Lovely Professional University, Punjab, India. The topics covered in this book are multidisciplinary in nature. The primary topics included in the book are from the domains of automobile engineering, mechatronics, material science and engineering, aerospace engineering, bio-mechanics, biomedical instrumentation, mathematical techniques, agricultural engineering, nuclear engineering, physics, biodynamic modelling and ergonomics etc. The contents of this book will be beneficial for beginners, researchers, and professionals alike.
This book contains high-quality papers presented in the conference Recent Advances in Mechanical Infrastructure (ICRAM 2020) held at IITRAM, Ahmedabad, India, from 21-23 August 2020. The topics covered in this book are recent advances in thermal infrastructure, manufacturing infrastructure and infrastructure planning and design.
This book features selected papers presented at the 15th International Conference on Electromechanics and Robotics "Zavalishin's Readings" - ER(ZR) 2020, held in Ufa, Russia, on 15-18 April 2020. The contributions, written by professionals, researchers and students, cover topics in the field of automatic control systems, electromechanics, electric power engineering and electrical engineering, mechatronics, robotics, automation and vibration technologies. The Zavalishin's Readings conference was established as a tribute to the memory of Dmitry Aleksandrovich Zavalishin (1900-1968) - a Russian scientist, corresponding member of the USSR Academy of Sciences and founder of the school of valve energy converters based on electric machines and valve converters energy. The first conference was organized by the Institute of Innovative Technologies in Electromechanics and Robotics at the Saint Petersburg State University of Aerospace Instrumentation in 2006.
This book highlights the rapidly emerging field of solution-processed halide perovskite lasers. These amazing materials not only possess exceptional photovoltaic properties, but are also outstanding optical gain media. Halide perovskites are the latest member of solution-processed optical gain media, joining organics and traditional semiconductor colloidal quantum dots. Amplified spontaneous emission and lasing have been demonstrated in various halide perovskite configurations and nanostructures with wavelengths tunable over the visible and infrared wavelengths (400-1000 nm). This book provides comprehensive information on perovskite lasing, starting with some fundamentals of lasers and their basic operating principles. Unambiguous methods for identifying lasing light emission are presented, while the basic optoelectronic properties of perovskite materials are also discussed, with an emphasis on their photophysics, using ultrafast optical spectroscopy techniques. The viability of perovskites as a gain media within a suitable resonator, as well as the characterization methods for optical gain, are highlighted. The book closes with a discussion on the remaining challenges (such as electrical driven lasing and material stabilities) that need to be tackled, and the future of this new family of lasers.
This book discusses the basic theoretical model and implementation method of intelligent machining technology and promotes the application of intelligent machining technology in the manufacturing of complex aviation components, such as aero-engine blisk, casing parts and blades. It not only presents the fundamental theory of intelligent machining, but also provides detailed examples of applications in the aviation industry.The topics covered include intelligent programming, intelligent processing models, process monitoring, machining process control, intelligent fixtures and applications in aviation components machining.This book is intended for researchers, engineers and postgraduate students in fields of manufacturing, mechatronics, mechanical engineering and related areas.
This book presents cutting-edge research and developments in the field of biomedical engineering, with a special emphasis on achievements by Asian research groups. It covers machine learning and computational modeling methods applied to biomedical and clinical research, advanced methods for biosignal processing and bioimaging, MEMS applications, and advances in biosensors. Further topics include biomechanics, prosthetics, orthotics and tissue engineering. Other related (bio-) engineering applications, such as in ecosystem development, water quality assessment, and material research, are also covered. Gathering the proceedings of the 6th Kuala Lumpur International Conference on Biomedical Engineering, held online on July 28-29, 2021 from Kuala Lumpur, Malaysia, the book is intended to provide researchers and professionals with extensive and timely information on the state-of-the-art research and applications in biomedical engineering, and to promote interdisciplinary and international collaborations.
This book presents a very useful and readable collection of chapters in nanotechnologies for energy conversion, storage, and utilization, offering new results which are sure to be of interest to researchers, students, and engineers in the field of nanotechnologies and energy. Readers will find energy systems and nanotechnology very useful in many ways such as generation of energy policy, waste management, nanofluid preparation and numerical modelling, energy storage, and many other energy-related areas. It is also useful as reference book for many energy and nanofluid-related courses being taken up by graduate and undergraduate students. In particular, this book provides insights into various forms of renewable energy, such as biogas, solar energy, photovoltaic, solar cells, and solar thermal energy storage. Also, it deals with the CFD simulations of various aspects of nanofluids/hybrid nanofluids.
Porous silicon is rapidly attracting increasing interest from various fields, including optoelectronics, microelectronics, photonics, medicine, chemistry, and biosensing. This nanostructured and biodegradable material has a range of unique properties that make it ideal for many applications. For example, the pores and surface chemistry of the material can be manipulated to change the rate of drug release from hours to months. Porous Silicon: Biomedical and Sensor Applications, Volume Two is part of the three-book series Porous Silicon: From Formation to Application. It discusses applications of porous silicon in bioengineering and in various sensors, including gas sensors, biosensors, pressure sensors, mechanical sensors, optical sensors, and many other types. It also thoroughly reviews the fabrication, parameters, and applications of devices that use porous silicon. Drawing upon a vast amount of recently published literature, the book guides readers through practical implementations that span environmental control, chemistry, spectroscopy, gas chromatography, microelectronics, micromachining, microfluidics, medicine, biotechnology, and the car industry. It is divided into three sections that focus on: Types of sensors that use porous silicon Auxiliary devices that use porous silicon Biomedical applications such as drug delivery, tissue engineering, and in vivo imaging Representing the most recent progress in applications of porous silicon to biomedical and sensory technology, this reference is indispensable for those involved in the research, development, and application of porous silicon in several scientific disciplines. It also serves as a starting point for the interested but unfamiliar reader to gain a thorough understanding of the unusual properties of porous silicon, other porous materials, and possible areas for current and future applications.
This book presents device design, layout design, FEM analysis, device fabrication, and packaging and testing of MEMS-based piezoelectric vibration energy harvesters. It serves as a complete guide from design, FEM, and fabrication to characterization. Each chapter of this volume illustrates key insight technologies through images. The book showcases different technologies for energy harvesting and the importance of energy harvesting in wireless sensor networks. The design, simulation, and comparison of three types of structures - single beam cantilever structure, cantilever array structure, and guided beam structure have also been reported in one of the chapters. In this volume, an elaborate characterization of two-beam and four-beam fabricated devices has been carried out. This characterization includes structural, material, morphological, topological, dynamic, and electrical characterization of the device. The volume is very concise, easy to understand, and contains colored images to understand the details of each process.
This book presents a collection of cross-disciplinary research, with contributions addressing all key features of the plant/microbe/ENP nexus in agro-ecosystems. The uptake, transport and transformation of nanoparticles in plants have attracted more and more attention in the past several years. Especially, the impact of Engineered Nanoparticles (ENPs) on bioprocesses; low-, medium- and high-level dose responses in the microbial community of soil; and long-, medium- and short-term exposure responses, particularly microbial nitrogen transformations, are just a few of the aspects involved. Since ENPs are used in many industries, including cosmetics, agriculture, medicine, food technology and waste management, their transport through biogeochemical cycles is an important focus of many studies today. Specifically, ENP-microbe interaction has been analysed with regard to disease treatment for plants; it plays a vital role in disease inhibition by releasing metal ions that act through many pathways - e.g. reactive oxygen species (ROS) generation, DNA transformation and disruption of the cell cycle - to stop cell growth in the pathogen. Due to these properties, ENPs are also used as slow release or delayed release pesticides and fungicides, and as carrier systems for growth-promoting hormones. Despite their multiple uses in various industries, the negative effects of ENPs are still a major concern for the scientific community and consumers alike. For example, their transport to various food chains has been reported to have adverse effects. This raises a degree of doubt concerning a rapidly growing scientific field with major applications in many industries. From a sustainable development perspective and particularly to ensure food security in light of the uncertainty accompanying climate change, it is imperative to address this divergence by focusing on the plant/microbe/ENP nexus.
This book explores the application of deep learning techniques within a particularly difficult computational type of computer vision (CV) problem super-resolution (SR). The authors present and discuss ways to apply computational intelligence (CI) methods to SR. The volume also explores the possibility of using different kinds of CV techniques to develop and enhance the tools/processes related to SR. The application areas covered include biomedical engineering, healthcare applications, medicine, histology, and material science. The book will be a valuable reference for anyone concerned with multiple multimodal images, especially professionals working in remote sensing, nanotechnology and immunology at research institutes, healthcare facilities, biotechnology institutions, agribusiness services, veterinary facilities, and universities.
This book presents best selected research papers presented at the Thirteenth International Conference on Applied Mathematics and Mechanics in the Aerospace Industry (AMMAI 2020), held from September 6 to September 13, 2020, at the Alushta Health and Educational Center (The Republic of Crimea). The book is dedicated to solving actual problems of applied mechanics using modern computer technology including smart paradigms. Physical and mathematical models, numerical methods, computational algorithms, and software complexes are discussed, which allow to carry out high-precision mathematical modeling in fluid, gas, and plasma mechanics, in general mechanics, deformable solid mechanics, in strength, destruction and safety of structures, etc. Technologies and software systems that provide effective solutions to the problems at various multi-scale levels are considered. Special attention is paid to the training of highly qualified specialists for the aviation and space industry. The book is recommended for specialists in the field of applied mathematics and mechanics, mathematical modeling, information technologies, and developers of modern applied software systems. |
You may like...
The Indispensable Guide to Clean Humor…
Sorrels A Mit Sorrels and Kevin Sorrels, Mit Sorrels and Kevin Sorrels
Hardcover
R848
Discovery Miles 8 480
|