![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture
This book considers the design and development of nanoelectronic computing circuits, systems and architectures focusing particularly on memristors, which represent one of today's latest technology breakthroughs in nanoelectronics. The book studies, explores, and addresses the related challenges and proposes solutions for the smooth transition from conventional circuit technologies to emerging computing memristive nanotechnologies. Its content spans from fundamental device modeling to emerging storage system architectures and novel circuit design methodologies, targeting advanced non-conventional analog/digital massively parallel computational structures. Several new results on memristor modeling, memristive interconnections, logic circuit design, memory circuit architectures, computer arithmetic systems, simulation software tools, and applications of memristors in computing are presented. High-density memristive data storage combined with memristive circuit-design paradigms and computational tools applied to solve NP-hard artificial intelligence problems, as well as memristive arithmetic-logic units, certainly pave the way for a very promising memristive era in future electronic systems. Furthermore, these graph-based NP-hard problems are solved on memristive networks, and coupled with Cellular Automata (CA)-inspired computational schemes that enable computation within memory. All chapters are written in an accessible manner and are lavishly illustrated. The book constitutes an informative cornerstone for young scientists and a comprehensive reference to the experienced reader, hoping to stimulate further research on memristive devices, circuits, and systems.
The 16thInternational Symposium on MEMS and Nanotechnology, Volume 5 of the Proceedings of the 2015SEM Annual Conference& Exposition on Experimental and Applied Mechanics, the fifth volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Microscale and Microstructural Effects on Mechanical Behavior Dynamic Micro/Nanomechanics In-situ Techniques Mechanics of Graphene Indentation and Small Scale Testing MEMS
This book presents the physical and technical foundation of the state of the art in applied scanning probe techniques. It constitutes a timely and comprehensive overview of SPM applications. The chapters in this volume relate to scanning probe microscopy techniques, characterization of various materials and structures and typical industrial applications, including topographic and dynamical surface studies of thin-film semiconductors, polymers, paper, ceramics, and magnetic and biological materials. The chapters are written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective.
Nanoparticles for Gene Delivery into Stem Cells and Embryos, by Pallavi Pushp, Rajdeep Kaur, Hoon Taek Lee, Mukesh Kumar Gupta. Engineering of Polysaccharides via Nanotechnology, by Joydeep Dutta. Hydroxyapatite-Packed Chitosan-PMMA Nanocomposite: A Promising Material for Construction of Synthetic Bone, by Arundhati Bhowmick, Subhash Banerjee, Ratnesh Kumar, Patit Paban Kundu. Biodegradable Polymers for Potential Delivery Systems for Therapeutics, by Sanjeev K. Pandey, Chandana Haldar, Dinesh K. Patel, Pralay Maiti. Phytomedicine-Loaded Polymeric Nanomedicines: Potential Cancer Therapeutics, by S. Maya, M. Sabitha, Shantikumar V. Nair, R. Jayakumar. Proteins and Carbohydrates as Polymeric Nanodrug Delivery Systems: Formulation, Properties and Toxicological Evaluation, by Dhanya Narayanan, J. Gopikrishna, Shantikumar V. Nair, Deepthy Menon. Biopolymeric Micro and Nanoparticles: Preparation, Characterization and Industrial Applications, by Anil Kumar Anal, Alisha Tuladhar. Applications of Glyconanoparticles as "Sweet" Glycobiological Therapeutics and Diagnostics, by Naresh Kottari, Yoann M. Chabre, Rishi Sharma, Rene Roy.
Dynamic Behavior of Materials, Volume 1: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics, the first volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental Mechanics, including papers on: General Dynamic Material Properties Novel Dynamic Testing Techniques Dynamic Fracture and Failure Novel Testing Techniques Dynamic Behavior of Geo-materials Dynamic Behavior of Biological and Biomimetic Materials Dynamic Behavior of Composites and Multifunctional Materials Dynamic Behavior of Low-Impedance materials Multi-scale Modeling of Dynamic Behavior of Materials Quantitative Visualization of Dynamic Behavior of Materials Shock/Blast Loading of Materials
The technologies for product assembly and manufacturing evolve along with the advancement of enabling technologies such as material science, robotics, machine intelligence as well as information and communication. Furthermore, they may be subject to fundamental changes due to the shift in key product features and/or - gineering requirements. The enabling technologies emerging offer new opportunities for moving up the level of automation, optimization and reliability in product assembly and ma- facturing beyond what have been possible. We see assembly and manufacturing becoming more Intelligent with the perception-driven robotic autonomy, more flexible with the human-robot coupled collaboration in work cells, and more in- grated in scale and complexity under the distributed and networked frameworks. On the other hand, the shift in key product features and engineering requirements dictates the new technologies and tools for assembly and manufacturing to be - veloped. This may be exemplified by a high complexity of micro/nano system products integrated and packaged in 3D with various heterogeneous parts, com- nents, and interconnections, including electrical, optical, mechanical as well as fluidic means.
Challenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Volume 2: Proceedings of the 2013 SEM Annual Conference& Exposition on Experimental and Applied Mechanics, the second volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental Mechanics, including papers in the following general technical research areas: Metallic, Polymeric and Composite Materials Effects of Extreme Environments including Radiation Resistance, Damage, and Aging Challenges in Time-dependent Behavior Modeling of Low, Moderate and High Strain Rates Effects of Frequency and Hysteretic Heating Effects of Inhomogeneities on the Time-Dependent Behavior Composite, Hybrid and Multifunctional Materials Challenges in Time-dependent Behavior Modeling Viscoelastoplasticity and Damage Effects of Interfaces and Interphases on the Time-Dependent Behavior Environmental and Reactive Property Change Effects on Thermomechanical and Multifunctional Behaviors Modeling and Characterization of Fabrication Processes of Conventional and Multifunctional Materials Time-dependent and Small-scale Effects in Micro/Nano-scale TestingTime-dependent Processes in Biomaterials
This book presents the physical and technical foundation of the state of the art in applied scanning probe techniques. It constitutes a timely and comprehensive overview of SPM applications. The chapters in this volume relate to scanning probe microscopy techniques, characterization of various materials and structures and typical industrial applications, including topographic and dynamical surface studies of thin-film semiconductors, polymers, paper, ceramics, and magnetic and biological materials. The chapters are written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective.
Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.
This book focuses on the modeling and analysis of heat and fluid flow in microchannels and micro-systems, compiling a number of analytical and hybrid numerical-analytical solutions for models that account for the relevant micro-scale effects, with the corresponding experimental analysis validation when applicable. The volume stands as the only available compilation of easy to use analytically-based solutions for micro-scale heat and fluid flow problems, that systematically incorporates the most relevant micro-scale effects into the mathematical models, followed by their physical interpretation on the micro-system behavior.
This book covers a wide range of topics relating to carbon nanomaterials, from synthesis and functionalization to applications in advanced biomedical devices and systems. As they possess unique and attractive chemical, physical, optical, and even magnetic properties for various applications, considerable effort has been made to employ carbon nanomaterials (e.g., fullerenes, carbon nanotubes, graphene, nanodiamond) as new materials for the development of novel biomedical tools, such as diagnostic sensors, imaging agents, and drug/gene delivery systems for both diagnostics and clinical treatment. Tremendous progress has been made and the scattered literature continues to grow rapidly. With chapters by world-renowned experts providing an overview of the state of the science as well as an understanding of the challenges that lie ahead, Carbon Nanomaterials for Biomedical Applications is essential reading not only for experienced scientists and engineers in biomedical and nanomaterials areas, but also for graduate students and advanced undergraduates in materials science and engineering, chemistry, and biology.
This book shows how severe plastic deformation techniques could be used to enhance the hydrogen storage properties of metal hybrides. The mechanochemical techniques of ball-milling (BM), Cold Rolling (CR), Equal Chanel Angular Pressing (ECAP) and High Pressure Torsion (HPT) are covered. Each technique is described and critically assessed with respect to its usefulness to process metal hybrides at an industrial scale.
This book provides a broad overview on the relationship between structure and mechanical properties of carbon nanomaterials from world-leading scientists in the field. The main aim is to get an in-depth understanding of the broad range of mechanical properties of carbon materials based on their unique nanostructure and on defects of several types and at different length scales. Besides experimental work mainly based on the use of (in-situ) Raman and X-ray scattering and on nanoindentation, the book also covers some aspects of multiscale modeling of the mechanics of carbon nanomaterials.
This book discusses the promising area of perovskite-based solar cells. It places particular emphasis on a highly unique perovskite solar cell structure, focusing on the special properties of hybrid organic-inorganic perovskites. As such, it offers readers sound essentials, serving as building blocks for the future development of this rapidly evolving field.
The book provides accurate FDTD models for on-chip interconnects, covering most recent advancements in materials and design. Furthermore, depending on the geometry and physical configurations, different electrical equivalent models for CNT and GNR based interconnects are presented. Based on the electrical equivalent models the performance comparison among the Cu, CNT and GNR-based interconnects are also discussed in the book. The proposed models are validated with the HSPICE simulations. The book introduces the current research scenario in the modeling of on-chip interconnects. It presents the structure, properties, and characteristics of graphene based on-chip interconnects and the FDTD modeling of Cu based on-chip interconnects. The model considers the non-linear effects of CMOS driver as well as the transmission line effects of interconnect line that includes coupling capacitance and mutual inductance effects. In a more realistic manner, the proposed model includes the effect of width-dependent MFP of the MLGNR while taking into account the edge roughness.
This book explains the operating principles of atomic force microscopy and scanning tunneling microscopy. The aim of this book is to enable the reader to operate a scanning probe microscope successfully and understand the data obtained with the microscope. The chapters on the scanning probe techniques are complemented by the chapters on fundamentals and important technical aspects. This textbook is primarily aimed at graduate students from physics, materials science, chemistry, nanoscience and engineering, as well as researchers new to the field.
This book presents the theory of quantum effects used in metrology and results of the author’s own research in the field of quantum electronics. The book provides also quantum measurement standards used in many branches of metrology for electrical quantities, mass, length, time and frequency. This book represents the first comprehensive survey of quantum metrology problems. As a scientific survey, it propagates a new approach to metrology with more emphasis on its connection with physics. This is of importance for the constantly developing technologies and nanotechnologies in particular. Providing a presentation of practical applications of the effects used in quantum metrology for the construction of quantum standards and sensitive electronic components, the book is useful for a wide audience of physicists and metrologists in the broad sense of both terms. In 2014 a new system of units, the so called Quantum SI, is introduced. This book helps to understand and approve the new system to both technology and academic community.
Metal-dielectric interfaces are ubiquitous in modern electronics. As advanced gigascale electronic devices continue to shrink, the stability of these interfaces is becoming an increasingly important issue that has a profound impact on the operational reliability of these devices. In this book, the authors present the basic science underlying the thermal and electrical stability of metal-dielectric interfaces and its relationship to the operation of advanced interconnect systems in gigascale electronics. Interface phenomena, including chemical reactions between metals and dielectrics, metallic-atom diffusion, and ion drift, are discussed based on fundamental physical and chemical principles. Schematic diagrams are provided throughout the book to illustrate interface phenomena and the principles that govern them. Metal-Dielectric Interfaces in Gigascale Electronics provides a unifying approach to the diverse and sometimes contradictory test results that are reported in the literature on metal-dielectric interfaces. The goal is to provide readers with a clear account of the relationship between interface science and its applications in interconnect structures. The material presented here will also be of interest to those engaged in field-effect transistor and memristor device research, as well as university researchers and industrial scientists working in the areas of electronic materials processing, semiconductor manufacturing, memory chips, and IC design.
This book captures selected peer reviewed papers presented at the 5th International Conference on Sustainable Automotive Technologies, ICSAT 2013, held in Ingolstadt, Germany. ICSAT is the state-of-the-art conference in the field of new technologies for transportation. The book brings together the work of international researchers and practitioners under the following interrelated headings: fuel transportation and storage, material recycling, manufacturing and management costs, engines and emission reduction. The book provides a very good overview of research and development activities focused on new technologies and approaches capable of meeting the challenges to sustainable mobility.
This book presents recent advances and developments in control, automation, robotics, and measuring techniques. It presents contributions of top experts in the fields, focused on both theory and industrial practice. In particular the book is devoted to new ideas, challenges, solutions and applications of Mechatronics. The particular chapters present a deep analysis of a specific technical problem which is in general followed by a numerical analysis and simulation, and results of an implementation for the solution of a real world problem. The presented theoretical results, practical solutions and guidelines will be useful for both researchers working in the area of engineering sciences and for practitioners solving industrial problems.
This long-awaited volume chronicles the horological work carried out in France, Germany, and North America and completes the fascinating history of precision timekeeping in recent time. In France, renowned clockmakers include the Berthouds, the Lepautes, Robin, Janvier, Lepine, LeRoy and Leroy, Bourdier, Jacot and Jarossay. In Germany the primary emphasis is on Riefler, Strasser, and Rohde, but the works of other important makers are also considered. America's contribution to precision timekeeping is chronicled including the works of Seth Thomas, Charles Fasoldt, William Bond and Son Co., E. Howard and Co. and others. Recent advancements in timekeeping include the W5, a clock created by Philip Woodward and the Littlemore clock created by Professor Hall, almost certainly the most accurate pendulum controlled clock the world has known. Over 500 beautiful color and black-and-white photographs illustrate the historical contributions of these eminent clockmakers.
Frank Neumann focuses on establishing a theoretical basis that allows a description of the interplay between individual and collective processes in product development. For this purpose, he introduces the integrated descriptive model of knowledge creation as the first constituent of his research framework. As a second part of the research framework, an analysis and modeling method is proposed that captures the various knowledge conversion activities described by the integrated descriptive model of knowledge creation. Subsequently, this research framework is applied to the analysis of knowledge characteristics of mechatronic product development (MPD). Finally, the results gained from the previous steps are used within a design support system that aims at federating the information and knowledge resources contained in the models published in the various development activities of MPD.
This book presents cutting-edge research on a wide range of nanotechnology techniques and applications. It features contributions from scientists who participated in the International Summer School "Nanotechnology: From Fundamental Research to Innovations" in Bukovel, Ukraine on August 26 - September 2, 2012 funded by the European Commission FP7 project Nanotwinning implemented by the Institute of Physics of National Academy of Sciences of Ukraine and partner institutions: University of Tartu (Estonia), European Profiles A.E. (Greece), University of Turin (Italy) and Universite Pierre et Marie Curie (France). Worldwide experts present the latest results on such key topics as microscopy of nanostructures; nanocomposites; nanostructured interfaces and surfaces; nanooptics; nanoplasmonics; and enhanced vibrational spectroscopy. Imaging technique coverage ranges from atomic force microscopy and spectroscopy, multiphoton imagery, and laser diagnostics of nanomaterials and nanostructures, to resonance Raman and SERS for surface characterization, and scanning tunneling microscopy of organic molecules. The breadth of topics highlights the exciting variety of research currently being undertaken in this field and suggests new opportunities for interdisciplinary collaboration and future research.
Colloidal nanocrystals show much promise as an optoelectronics architecture due to facile control over electronic properties afforded by chemical control of size, shape, and heterostructure. Unfortunately, realizing practical devices has been forestalled by the ubiquitous presence of charge "trap" states which compete with band-edge excitons and result in limited device efficiencies. Little is known about the defining characteristics of these traps, making engineered strategies for their removal difficult. This thesis outlines pulsed optically detected magnetic resonance as a powerful spectroscopy of the chemical and electronic nature of these deleterious states. Counterintuitive for such heavy atom materials, some trap species possess very long spin coherence lifetimes (up to 1.6 s). This quality allows use of the trapped charge's magnetic moment as a local probe of the trap state itself and its local environment. Beyond state characterization, this spectroscopy can demonstrate novel effects in heterostructured nanocrystals, such as spatially-remote readout of spin information and the coherent control of light harvesting yield.
This book contains a selection of papers presented at the First National Conference on Sensors held in Rome 15-17 February 2011. The conference highlighted state-of-the-art results from both theoretical and applied research in the field of sensors and related technologies. This book presents material in an interdisciplinary approach, covering many aspects of the disciplines related to sensors, including physics, chemistry, materials science, biology and applications. * Provides a selection of the best papers from the First Italian National Conference on Sensors; * Covers a broad range of topics relating to sensors and microsystems, including physics, chemistry, materials science, biology and applications; * Offers interdisciplinary coverage, aimed at defining a common ground for sensors beyond the specific differences among the different particular implementation of sensors. |
![]() ![]() You may like...
Intelligent Machining of Complex…
Dinghua Zhang, Ming Luo, …
Hardcover
R5,018
Discovery Miles 50 180
Microfabrication of Stimuli-Responsive…
Chuanliang Feng, Xiaoqiu Dou, …
Hardcover
R3,024
Discovery Miles 30 240
Initiation and Flame Propagation in…
Nikolai M. Rubtsov, Boris S. Seplyarskii, …
Hardcover
R3,037
Discovery Miles 30 370
Flow Visualization: Techniques And…
Alexander J. Smits, Tee Tai Lim
Hardcover
R4,419
Discovery Miles 44 190
|