![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture
This book covers a variety of topics in the field of mechatronics engineering, with a special focus on innovative control and automation concepts for applications in a wide range of field, including industrial production, medicine and rehabilitation, education and transport. Based on a set of papers presented at the 1st International Conference "Innovation in Engineering", ICIE, held in Guimaraes, Portugal, on June 28-30, 2021, the chapters report on cutting-edge control algorithms for mobile robots and robot manipulators, innovative industrial monitoring strategies for industrial process, improved production systems for smart manufacturing, and discusses important issues related to user experience, training and education, as well as national developments in the field of mechatronics . This volume, which belongs to a three-volume set, provides engineering researchers and professionals with a timely overview and extensive information on trends and technologies behind the future developments of mechatronics systems in the era of Industry 4.0.
This book covers several futuristic computing technologies like quantum computing, quantum-dot cellular automata, DNA computing, and optical computing. In turn, it explains them using examples and tutorials on a CAD tool that can help beginners get a head start in QCA layout design. It discusses research on the design of circuits in quantum-dot cellular automata (QCA) with the objectives of obtaining low-complexity, robust designs for various arithmetic operations. The book also investigates the systematic reduction of majority logic in the realization of multi-bit adders, dividers, ALUs, and memory.
This book explores the development of nanopesticides and tests of their biological activity against target organisms. It also covers the effects of nanopesticides in the aquatic and terrestrial environments, along with related subjects including fate, behaviour, mechanisms of action and toxicity. Moreover, the book discusses the potential risks of nanopesticides for non-target organisms, as well as regulatory issues and future perspectives.
Mechanics of Biological Systems and Materials & Micro-and Nanomechanics, Volume 4 of the Proceedings of the 2019 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the fourth volume of six from the Conference, brings together contributions to important areas of research and engineering. The collection presents early findings and case studies on a wide range of topics, including: Extreme NanomechanicsIn-Situ NanomechanicsExpanding Boundaries in MetrologyMicro and Nanoscale DeformationMEMS for Actuation, Sensing and Characterization1D & 2D MaterialsCardiac MechanicsCell Mechanics Biofilms and Microbe MechanicsTraumatic Brain InjuryOrthopedic BiomechanicsLigaments and Soft Materials
The thesis tackles one of the most difficult problems of modern nanoscale science and technology - exploring what governs thermal phenomena at the nanoscale, how to measure the temperatures in devices just a few atoms across, and how to manage heat transport on these length scales. Nanoscale heat generated in microprocessor components of only a few tens of nanometres across cannot be effectively fed away, thus stalling the famous Moore's law of increasing computer speed, valid now for more than a decade. In this thesis, Jean Spiece develops a novel comprehensive experimental and analytical framework for high precision measurement of heat flows at the nanoscale using advanced scanning thermal microscopy (SThM) operating in ambient and vacuum environment, and reports the world's first operation of cryogenic SThM. He applies the methodology described in the thesis to novel carbon-nanotube-based effective heat conductors, uncovers new phenomena of thermal transport in two- dimensional (2D) materials such as graphene and boron nitride, thereby discovering an entirely new paradigm of thermoelectric cooling and energy production using geometrical modification of 2D materials.
This book is intended for students taking a Machine Design course leading to a Mechanical Engineering Technology degree. It can be adapted to a Machine Design course for Mechanical Engineering students or used as a reference for adopting systems engineering into a design course. The book introduces the fundamentals of systems engineering, the concept of synthesis, and the basics of trade-off studies. It covers the use of a functional flow block diagram to transform design requirements into the design space to identify all success modes. The book discusses fundamental stress analysis for structures under axial, torsional, or bending loads. In addition, the book discusses the development of analyzing shafts under combined loads by using Mohr's circle and failure mode criterion. Chapter 3 provides an overview of fatigue and the process to develop the shaft-sizing equations under dynamic loading conditions. Chapter 4 discusses power equations and the nomenclature and stress analysis for spur and straight bevel gears and equations for analyzing gear trains. Other machine component topics include derivation of the disc clutch and its relationship to compression springs, derivation of the flat belt equations, roller and ball bearing life equations, roller chains, and keyways. Chapter 5 introduces the area of computational machine design and provides codes for developing simple and powerful computational methods to solve: cross product required to calculate the torques and bending moments on shafts, 1D stress analysis, reaction loads on support bearings, Mohr's circle, shaft sizing under dynamic loading, and cone clutch. The final chapter shows how to integrate Systems Engineering into machine design for a capstone project as a project-based collaborative design methodology. The chapter shows how each design requirement is transformed through the design space to identify the proper engineering equations.
This book describes the future of microscopically small medical devices and how to locate a lab to start conducting your own do-it-yourself microelectromechanical systems (MEMS) research in one of the many national, international, government, and other regional open use facilities, where you can quickly begin designing and fabricating devices for your applications. You will learn specific, tangible information on what MEMS are and how a device is fabricated, including what the main types of equipment are in these facilities. The book provides advice on working in a cleanroom, soft materials, collaboration, intellectual property and privacy issues, regulatory compliance, and how to navigate other issues that may arise. This book is primarily aimed at researchers and students who work at universities without MEMS facilities, and small companies who need access to MEMS resources.
This textbook provides an introduction to circuits, systems, and motors for students in electrical engineering as well as other majors that need an introduction to circuits. Unlike most other textbooks that highlight only circuit theory, this book goes into detail on many practical aspects of working with circuits, including electrical safety and the proper method to measure the relevant circuit parameters using modern measurement systems. Coverage also includes a detailed discussion of motors and generators, including brushless DC motors, as these are critical topics in the robotic and mechatronics industries. Lastly, the book discusses A/D and D/A converters given their importance in modern measurement and control systems. In addition to covering the basic circuit concepts, the author also provides the students with the necessary mathematics to analyze correctly the circuit concepts being presented. The chapter on phasor domain circuit analysis begins with a detailed review of complex numbers as many students are weak in this area. Likewise, before discussing filters and Bode Diagrams, the Fourier Transform and later the Laplace Transform are explained.
This thesis presents the SiGe source and drain (S/D) technology in the context of advanced CMOS, and addresses both device processing and epitaxy modelling. As the CMOS technology roadmap calls for continuously downscaling traditional transistor structures, controlling the parasitic effects of transistors, e.g. short channel effect, parasitic resistances and capacitances is becoming increasingly difficult. The emergence of these problems sparked a technological revolution, where a transition from planar to three-dimensional (3D) transistor design occurred in the 22nm technology node. The selective epitaxial growth (SEG) method has been used to deposit SiGe as stressor material in S/D regions to induce uniaxial strain in the channel region. The thesis investigates issues of process integration in IC production and concentrates on the key parameters of high-quality SiGe selective epitaxial growth, with a special focus on its pattern dependency behavior and on key integration issues in both 2D and 3D transistor structures, the goal being to improve future applications of SiGe SEG in advanced CMOS.
Engineering Dynamics Course Companion, Part 1: Particles: Kinematics and Kinetics is a supplemental textbook intended to assist students, especially visual learners, in their approach to Sophomore-level Engineering Dynamics. This text covers particle kinematics and kinetics and emphasizes Newtonian Mechanics "Problem Solving Skills" in an accessible and fun format, organized to coincide with the first half of a semester schedule many instructors choose, and supplied with numerous example problems. While this book addresses Particle Dynamics, a separate book (Part 2) is available that covers Rigid Body Dynamics.
Engineering Dynamics Course Companion, Part 2: Rigid Bodies: Kinematics and Kinetics is a supplemental textbook intended to assist students, especially visual learners, in their approach to Sophomore-level Engineering Dynamics. This text covers particle kinematics and kinetics and emphasizes Newtonian Mechanics ``Problem Solving Skills'' in an accessible and fun format, organized to coincide with the first half of a semester schedule many instructors choose, and supplied with numerous example problems. While this book addresses Rigid Body Dynamics, a separate book (Part 1) is available that covers Particle Dynamics.
This thesis develops next-generation multi-degree-of-freedom gyroscopes and inertial measurement units (IMU) using micro-electromechanical-systems (MEMS) technology. It covers both a comprehensive study of the physics of resonator gyroscopes and novel micro/nano-fabrication solutions to key performance limits in MEMS resonator gyroscopes. Firstly, theoretical and experimental studies of physical phenomena including mode localization, nonlinear behavior, and energy dissipation provide new insights into challenges like quadrature errors and flicker noise in resonator gyroscope systems. Secondly, advanced designs and micro/nano-fabrication methods developed in this work demonstrate valuable applications to a wide range of MEMS/NEMS devices. In particular, the HARPSS+ process platform established in this thesis features a novel slanted nano-gap transducer, which enabled the first wafer-level-packaged single-chip IMU prototype with co-fabricated high-frequency resonant triaxial gyroscopes and high-bandwidth triaxial micro-gravity accelerometers. This prototype demonstrates performance amongst the highest to date, with unmatched robustness and potential for flexible substrate integration and ultra-low-power operation. This thesis shows a path toward future low-power IMU-based applications including wearable inertial sensors, health informatics, and personal inertial navigation.
This book describes the Asymptotic Modal Analysis (AMA) method to predict the high-frequency vibroacoustic response of structural and acoustical systems. The AMA method is based on taking the asymptotic limit of Classical Modal Analysis (CMA) as the number of modes in the structural system or acoustical system becomes large in a certain frequency bandwidth. While CMA requires both the computation of individual modes and a modal summation, AMA evaluates the averaged modal response only at a center frequency of the bandwidth and does not sum the individual contributions from each mode to obtain a final result. It is similar to Statistical Energy Analysis (SEA) in this respect. However, while SEA is limited to obtaining spatial averages or mean values (as it is a statistical method), AMA is derived systematically from CMA and can provide spatial information as well as estimates of the accuracy of the solution for a particular number of modes. A principal goal is to present the state-of-the-art of AMA and suggest where further developments may be possible. A short review of the CMA method as applied to structural and acoustical systems subjected to random excitation is first presented. Then the development of AMA is presented for an individual structural system and an individual acoustic cavity system, as well as a combined structural-acoustic system. The extension of AMA for treating coupled or multi-component systems is then described, followed by its application to nonlinear systems. Finally, the AMA method is summarized and potential further developments are discussed.
The extended and revised edition of this textbook provides essential information for a comprehensive upper-level graduate course on the crystalline growth of semiconductor heterostructures. Heteroepitaxy is the basis of today's advanced electronic and optoelectronic devices, and it is considered one of the most important fields in materials research and nanotechnology. The book discusses the structural and electronic properties of strained epitaxial layers, the thermodynamics and kinetics of layer growth, and it describes the major growth techniques: metalorganic vapor-phase epitaxy, molecular-beam epitaxy, and liquid-phase epitaxy. It also examines in detail cubic and hexagonal semiconductors, strain relaxation by misfit dislocations, strain and confinement effects on electronic states, surface structures, and processes during nucleation and growth. Requiring only minimal knowledge of solid-state physics, it provides natural sciences, materials science and electrical engineering students and their lecturers elementary introductions to the theory and practice of epitaxial growth, supported by references and over 300 detailed illustrations. In this second edition, many topics have been extended and treated in more detail, e.g. in situ growth monitoring, application of surfactants, properties of dislocations and defects in organic crystals, and special growth techniques like vapor-liquid-solid growth of nanowires and selective-area epitaxy.
This book provides a comprehensive reference to major neural interfacing technologies used to transmit signals between the physical world and the nervous system for repairing, restoring and even augmenting body functions. The authors discuss the classic approaches for neural interfacing, the major challenges encountered, and recent, emerging techniques to mitigate these challenges for better chronic performances. Readers will benefit from this book's unprecedented scope and depth of coverage on the technology of neural interfaces, the most critical component in any type of neural prostheses. Provides comprehensive coverage of major neural interfacing technologies; Reviews and discusses both classic and latest, emerging topics; Includes classification of technologies to provide an easy grasp of research and trends in the field.
This book highlights the various types of nanomaterials currently available and their applications in three major sectors: energy, health, and the environment. It addresses a range of aspects based on the fact that these materials' structure can be tailored at extremely small scales to achieve specific properties, thus greatly expanding the materials science toolkit. Further, the book pursues a holistic approach to nanomaterial applications by taking into consideration the various stakeholders who use them. It explores several applications that could potentially be used to improve the environment and to more efficiently and cost-effectively produce energy, e.g. by reducing pollutant production during the manufacture of materials, producing solar cells that generate electricity at a competitive cost, cleaning up organic chemicals that pollute groundwater, removing volatile organic compounds (VOCs) from the air, and so on. Given its scope, the book offers a valuable asset for a broad readership, including professionals, students, and researchers from materials science/engineering, polymer science, composite technology, nanotechnology, and biotechnology whose work involves nanomaterials and nanocomposites.
The book contains high quality papers presented in conference Recent Advances in Mechanical Infrastructure (ICRAM-2019) held at IITRAM, Ahmedabad, India from 20-21 April, 2019.The topics covered in this book are recent advances in thermal infrastructure, manufacturing infrastructure and infrastructure planning and design.
This book focuses on novel bismuth-containing alloys and nanostructures, covering a wide range of materials from semiconductors, topological insulators, silica optical fibers and to multiferroic materials. It provides a timely overview of bismuth alloys and nanostructures, from material synthesis and physical properties to device applications and also includes the latest research findings. Bismuth is considered to be a sustainable and environmentally friendly element, and has received increasing attention in a variety of innovative research areas in recent years. The book is intended as a reference resource and textbook for graduate students and researchers working in these fields.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
Microbial Nanobionics: Volume 2, Basic Research Applications continues the important discussion of microbial nanoparticle synthesis with a focus on the mechanistic approach of biosynthesis towards nanobionics. This volume also explores the toxicity of nanomaterials in microbes and their effect on human health and the environment. Special Emphasis is given to the use of polymeric nanomaterials in smart packing for the food industry and agricultural sector. The future of nanomaterials for detection of soil microbes and their interactions and tools for environmental remedies is also comprehensively covered. The rich biodiversity of microbes make them excellent candidates for potential nanoparticle synthesis biofactories. Through a better understanding of the biochemical and molecular mechanisms of the microbial biosynthesis of metal nanoparticles, the rate of synthesis can be better developed and the monodispersity of the product can be enhanced. The characteristics of nanoparticles can be controlled via optimization of important parameters, such as temperature, pH, concentration and pressure, which regulate microbe growth conditions and cellular and enzymatic activities. Large scale microbial synthesis of nanoparticles is a sustainable method due to the non-hazardous, non-toxic and economical nature of these processes. The applications of microbial synthesis of nanoparticles are wide and varied, spanning the industrial, biomedical and environmental fields. Biomedical applications include improved and more targeted antimicrobials, biosensing, imaging and drug delivery. In the environmental fields, nanoparticles are used for bioremediation of diverse contaminants, water treatment, catalysis and production of clean energy. With the expected growth of microbial nanotechnology, this volume will serve as a comprehensive and timely reference.
This book highlights recent advances in thin-film photonics, particularly as building blocks of metamaterials and metasurfaces. Recent advances in nanophotonics has demonstrated remarkable control over the electromagnetic field by tailoring the optical properties of materials at the subwavelength scale which results in the emergence of metamaterials and metasurfaces. However, most of the proposed platforms require intense lithography which makes them of minor practical relevance. Stacked ultrathin-films of dielectrics, semi-conductors, and metals are introduced as an alternative platform that perform unique or similar functionalities. This book discusses the new era of thin film photonics and its potential applications in perfect and selective light absorption, structural coloring, biosensing, enhanced spontaneous emission, reconfigurable photonic devices and super lensing.
This book addresses theoretical and experimental methods for exploring microstructured metamaterials, with a special focus on wave dynamics, mechanics, and related physical properties. The authors use various mathematical and physical approaches to examine the mechanical properties inherent to particular types of metamaterials. These include: * Boundary value problems in reduced strain gradient elasticity for composite fiber-reinforced metamaterials * Self-organization of molecules in ferroelectric thin films * Combined models for surface layers of nanostructures * Computer simulation at the micro- and nanoscale * Surface effects with anisotropic properties and imperfect temperature contacts * Inhomogeneous anisotropic metamaterials with uncoupled and coupled surfaces or interfaces * Special interface finite elements and other numerical and analytical methods for composite structures
This book highlights numerical models as powerful tools for the optimal design of Micro-Electro-Mechanical Systems (MEMS). Most MEMS experts have a background in electronics, where circuit models or behavioral models (i.e. lumped-parameter models) of devices are preferred to field models. This is certainly convenient in terms of preliminary design, e.g. in the prototyping stage. However, design optimization should also take into account fine-sizing effects on device behavior and therefore be based on distributed-parameter models, such as finite-element models. The book shows how the combination of automated optimal design and field-based models can produce powerful design toolboxes for MEMS. It especially focuses on illustrating theoretical concepts with practical examples, fostering comprehension through a problem-solving approach. By comparing the results obtained using different methods, readers will learn to identify their respective strengths and weaknesses. In addition, special emphasis is given to evolutionary computing and nature-inspired optimization strategies, the effectiveness of which has already been amply demonstrated. Given its scope, the book provides PhD students, researchers and professionals in the area of computer-aided analysis with a comprehensive, yet concise and practice-oriented guide to MEMS design and optimization. To benefit most from the book, readers should have a basic grasp of electromagnetism, vector analysis and numerical methods.
This book highlights some of the latest advances in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 6th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2018) in Kiev, Ukraine on August 27-30, 2018 organized by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on nanooptics, energy storage and biomedical applications. This book's companion volume also addresses topics such as materials properties, behavior, and synthesis.
This book includes selected, peer-reviewed contributions from the 2018 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2018, held in Busan, South Korea, 9-11 August 2018. Focusing on manufacturing techniques, physics, mechanics, and applications of modern materials with special properties, it covers a broad spectrum of nanomaterials and structures, ferroelectrics and ferromagnetics, and other advanced materials and composites. The authors discuss approaches and methods in nanotechnology; newly developed, environmentally friendly piezoelectric techniques; and physical and mechanical studies of the microstructural and other properties of materials. Further, the book presents a range of original theoretical, experimental and computational methods and their application in the solution of various technological, mechanical and physical problems. Moreover, it highlights modern devices demonstrating high accuracy, longevity and the ability to operate over wide temperature and pressure ranges or in aggressive media. The developed devices show improved characteristics due to the use of advanced materials and composites, opening new horizons in the investigation of a variety of physical and mechanical processes and phenomena. |
![]() ![]() You may like...
Biological Neural Networks: Hierarchical…
Konstantin V. Baev
Hardcover
R4,528
Discovery Miles 45 280
Experiments and Modeling in Cognitive…
Fabien Mathy, Mustapha Chekaf
Hardcover
David A. Robinson's Modeling the…
Thomas J. Anastasio, Joseph L. Demer, …
Hardcover
Multisensory Softness - Perceived…
Massimiliano Di Luca
Hardcover
Advances in Resting-State Functional MRI…
Jean Chen, Catie Chang
Paperback
|