![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture
This book presents how metasurfaces are exploited to develop new low-cost single sensor based multispectral cameras. Multispectral cameras extend the concept of conventional colour cameras to capture images with multiple color bands and with narrow spectral passbands. Images from a multispectral camera can extract significant amount of additional information that the human eye or a normal camera fails to capture and thus have important applications in precision agriculture, forestry, medicine, object identifications, and classifications. Conventional multispectral cameras are made up of multiple image sensors each externally fitted with a narrow passband wavelength filters, optics and multiple electronics. The need for multiple sensors for each band results in a number of problems such as being bulky, power hungry and suffering from image co-registration problems which in turn limits their wide usage. The above problems can be eliminated if a multispectral camera is developed using one single image sensor.
During the five hundred years that horology has been accepted as a separate art only a dozen or so men have made a positive contribution to its progress. Included in this little group of masters is the illustrious name of Abraham Louis Breguet (1747-1823), the arch-mecanicien in an age of mechanics. His contribution was as brilliant as it was original and, during a period when horological fashion was the slave of science, he lifted the watchmaker's art to a new dimension of visual and technical excellence. In doing so he radically changed the whole concept of horology and transformed it into an art form that won him the adulation of Europe. The unceasing search for perfection in the performance of his products led Breguet to the invention of mechanical principles that even today, are used in the design of the watch. His influence on the appearance and style of the watch was dramatic and his most complicated examples maintained the slim, elegant appearance that was to revolutionise watchmaking. Breguet's extraordinary ability in all branches of horology achieved for him the reputation of a genius, the patronage of kings and - rarest of all - the respect of the horological world. His products have never lost favour and many, in constant use, have been handed down through generations to their present owners. The passing of the years, with their many changes of fashion, have not diminished the beauty of the proportions and appearance of Breguet's work. The Art of Breguet is the complete, illustrated history of the work of Abraham Louis Breguet by the late George Daniels who has provided a detailed study of Breguet's horological philosophy that explains so many of the misunderstood aspects of his work. He describes in detail the complexity of Breguet's art and, by so doing, supplants the mystique that has surrounded it with a clearer understanding of its function. Over one hundred line drawings illustrate the progress of technical development and each is accompanied by an analysis of the mechanism and its intended purpose. The history of the development of the internal and external appearance of the vast range of Breguet's products is illustrated in a separate section, arranged in the order of manufacture to reveal the pattern of change in appearance. Each item is accompanied by a description of its external characteristics, mechanism, period of manufacture and, where possible, the date of sale. This reprinted edition, with a foreword by Emmanuel Breguet, has been long awaited and is addressed equally to the student and to the collector of Breguet's work.
This book highlights current advanced developments in bioepoxy and bioepoxy/clay nanocomposites and an optimisation of material formulation and processing parameters on fabrication of bioepoxy/clay nanocomposites in order to achieve the highest mechanical properties in relation to their morphological structures, thermal properties, as well as biodegradability and water absorption, which is based on the use of Taguchi design of experiments with the consideration of technical and economical point of view. It also elaborates holistic theoretical modelling of tensile properties of such bionanocomposites with respect to the effect of contents of nanoclay fillers and epoxydised soybean oil (ESO).
This highly informative and carefully presented book offers a comprehensive overview of the fundamentals of incompressible fluid flow. The textbook focuses on foundational topics to more complex subjects such as the derivation of Navier-Stokes equations, perturbation solutions, inviscid outer and inner solutions, turbulent flows, etc. The author has included end-of-chapter problems and worked examples to augment learning and self-testing. This book will be a useful reference for students in the area of mechanical and aerospace engineering.
A revolution in clock technology in England during the 1660s
allowed people to measure time more accurately, attend to it more
minutely, and possess it more privately than previously imaginable.
In "Telling Time," Stuart Sherman argues that innovations in prose
emerged simultaneously with this technological breakthrough,
enabling authors to recount the new kind of time by which England
was learning to live and work.
The book is a multidisciplinary space and serves as a platform to share and learn about the frontier knowledge between different areas related to "Recent trends in sustainable engineering." Sustainable engineering promotes the responsible use of resources and materials involved in the different manufacturing processes or the execution stages of a service. An interdisciplinary approach is required in all aspects of engineering. In this sense, engineers, researchers, and the academic community will play a fundamental role in developing new technologies that respect the environment, still, at the same time, that considers social and economic factors.
This book presents state-of-the-art coverage of synthesis of advanced functional materials. Unconventional synthetic routes play an important role in the synthesis of advanced materials as many new materials are metastable and cannot be synthesized by conventional methods. This book presents various synthesis methods such as conventional solid-state method, combustion method, a range of soft chemical methods, template synthesis, molecular precursor method, microwave synthesis, sono-chemical method and high-pressure synthesis. It provides a comprehensive overview of synthesis methods and covers a variety of materials, including ceramics, films, glass, carbon-based, and metallic materials. Many techniques for processing and surface functionalization are also discussed. Several engineering aspects of materials synthesis are also included. The contents of this book are useful for researchers and professionals working in the areas of materials and chemistry.
Resilience Engineering (RE) studies have successfully identified and described many instances of resilient performance in high hazard sectors as well as in the far more frequent cases where people and organisations cope with the uncertainties of daily operations. Since RE was first described in 2006, a steady accumulation of insights and efforts have provided the basis for practical tools and methods. This development has been documented by a series of texts in the Resilience Engineering Perspectives series as well as by a growing number of papers and reports. This book encapsulates the essential practical lessons learned from the use of Resilience Engineering (RE) for over ten years. The main contents are a series of chapters written by those who have been instrumental in these applications. To increase the value for the reader, each chapter will include: rationale for the overall approach; data sought and reason(s) for choosing; data sources used, data analyses performed, and how recommendations were made and turned into practice. Serving as a reference for practitioners who want to analyse, support, and manage resilient performance, this book also advances research into RE by inquiring why work goes well in unpredictable environments, to improve work performance, or compensate for deficiencies.
This textbook fills a gap to supply students with the fundamental principles and tools they need to perform the quantitative analyses of the neuroelectrophysiological approaches, including both conventional and emerging ones, prevalently used in neuroscience research and neuroprosthetics. The content grows out of a course on Neuroengineering and Neuroprosthetics, which the author has taught already several times. The key problems the author addresses include (1) the universal operating mechanisms of neuroelectrophysiological approaches, (2) proper configuration of each approach, and (3) proper interpretation of the resulting signals. Efforts are made both to extract the universal principles underlying this common class of approaches and discern the unique properties of each individual approach. To address these important problems, equivalent electrical circuit modeling and signal analysis are used to unravel the functioning mechanisms and principles and provide sound interpretations to the associated signals and phenomena. This book aims to derive analytical solutions to these equivalent circuits, which can offer clear and complete mechanistic insights to the underlying biophysics.
This book is a collection of papers presented at XIV International Scientific Conference "INTERAGROMASH 2021", held at Don State Technical University, Rostov-on-Don, Russia, during 24-26 February 2021. The research results presented in this book cover applications of unmanned aerial systems, satellite-based applications for precision agriculture, proximal and remote sensing of soil and crop, spatial analysis, variable-rate technology, embedded sensing systems, drainage optimization and variable rate irrigation, wireless sensor networks, Internet of things, robotics, guidance and automation, software and mobile apps for precision agriculture, decision support for precision agriculture and data mining for precision agriculture.
This book provides a comprehensive and systematic overview of the latest advances in nanomaterials for proteomics, both theoretical and practical. Consisting of seven chapters, it first covers the synthesis methods, characterization, principles, and performance of functional nanomaterials in various branches of proteomics in detail. This is followed by the applications of nanomaterials for the separation and analysis of various proteins and peptides. Given its scope, the book appeals to a broad readership, including those active in proteomics and materials science; it can also serve as a reference book for students majoring in proteomics analysis.
The block diagrams as engineering means for closed loop control, which have been established by classic control theory for decades, are replaced in the above mentioned book by networks, the signals are replaced by data. It corresponds to the "Industry 4.0" and to the structure of today's automatic control systems. Thereby a classic closed loop is treated not isolated from other elements of nowadays automation like bus communication and process logical control, and is completed in proposed book with new control elements, so called data stream managers (DSM). The proposed book treats the control theory systematically like it is done in classical books considering the new concept of data management. The theory is accompanied in the book with examples, exercises with solutions and MATLAB (R)-simulations.
The concepts represented in this textbook are explored for the first time in assistive and rehabilitation robotics, which is the combination of physical, cognitive, and social human-robot interaction to empower gait rehabilitation and assist human mobility. The aim is to consolidate the methodologies, modules, and technologies implemented in lower-limb exoskeletons, smart walkers, and social robots when human gait assistance and rehabilitation are the primary targets. This book presents the combination of emergent technologies in healthcare applications and robotics science, such as soft robotics, force control, novel sensing methods, brain-computer interfaces, serious games, automatic learning, and motion planning. From the clinical perspective, case studies are presented for testing and evaluating how those robots interact with humans, analyzing acceptance, perception, biomechanics factors, and physiological mechanisms of recovery during the robotic assistance or therapy. Interfacing Humans and Robots for Gait Assistance and Rehabilitation will enable undergraduate and graduate students of biomedical engineering, rehabilitation engineering, robotics, and health sciences to understand the clinical needs, technology, and science of human-robot interaction behind robotic devices for rehabilitation, and the evidence and implications related to the implementation of those devices in actual therapy and daily life applications.
This book presents state-of-the-art technologies, trends and applications with a focus on the healthcare domain for ultra-wideband (3.1-10.6 GHz) and 60 GHz (57-66 GHz) wireless communication systems. Due to various key features such as miniaturized antenna design, low power, high data rate, less effects on the human body, relatively less crowded spectrum, these technologies are becoming popular in various fields of biomedical applications and day-to-day life. The book highlights various aspects of these technologies related to body-centric communication, including antenna design requirements, channel modeling and characterization for WBANs, current fabrication and antenna design strategies for textile, flexible and implanted antennas. Apart from the general requirements and study related to these frequency bands, various application specific topics such as localization and tracking, physical activity recognition and assessment, vital sign monitoring and medical imaging are covered in detail. The book concludes with the glimpses of future aspects of the UWB and 60 GHz technology which includes IoT for healthcare and smart living, novel antenna materials and application of machine learning algorithms for overall performance enhancement.
This volume focuses on the fundamentals and advancements in micro and nanomanufacturing technologies applied in the biomedical and biochemical domain. The contents of this volume provide comprehensive coverage of the physical principles of advanced manufacturing technologies and the know-how of their applications in the fabrication of biomedical devices and systems. The book begins by documenting the journey of miniaturization and micro-and nano-fabrication. It then delves into the fundamentals of various advanced technologies such as micro-wire moulding, 3D printing, lithography, imprinting, direct laser machining, and laser-induced plasma-assisted machining. It also covers laser-based technologies which are a promising option due to their flexibility, ease in control and application, high precision, and availability. These technologies can be employed to process several materials such as glass, polymers: polycarbonate, polydimethylsiloxane, polymethylmethacrylate, and metals such as stainless steel, which are commonly used in the fabrication of biomedical devices, such as microfluidic technology, optical and fiber-optic sensors, and electro-chemical bio-sensors. It also discusses advancements in various MEMS/NEMS based technologies and their applications in energy conversion and storage devices. The chapters are written by experts from the fields of micro- and nano-manufacturing, materials engineering, nano-biotechnology, and end-users such as clinicians, engineers, academicians of interdisciplinary background. This book will be a useful guide for academia and industry alike.
This book presents cutting-edge research and developments in the field of biomedical engineering, with a special emphasis on achievements by Asian research groups. It covers machine learning and computational modeling methods applied to biomedical and clinical research, advanced methods for biosignal processing and bioimaging, MEMS applications, and advances in biosensors. Further topics include biomechanics, prosthetics, orthotics and tissue engineering. Other related (bio-) engineering applications, such as in ecosystem development, water quality assessment, and material research, are also covered. Gathering the proceedings of the 6th Kuala Lumpur International Conference on Biomedical Engineering, held online on July 28-29, 2021 from Kuala Lumpur, Malaysia, the book is intended to provide researchers and professionals with extensive and timely information on the state-of-the-art research and applications in biomedical engineering, and to promote interdisciplinary and international collaborations.
This book presents select proceedings of International Conference on Energy, Material Sciences and Mechanical Engineering (EMSME) 2020, held at National Institute of Technology Delhi. Various topics covered in this book include clean materials, solar energy systems, wind energy systems, power optimization, grid integration of renewable energy, smart energy storage technologies, artificial intelligence in solar and wind system, analysis of clean energy material in environment, converter topology, modelling and simulation. This book will be useful for researchers and professionals working in the areas of solar material science, electrical engineering, and energy technologies.
This book features selected papers presented at the 16th International Conference on Electromechanics and Robotics 'Zavalishin's Readings' - ER(ZR) 2021, held in St. Petersburg, Russia, on April 14-17, 2021. The contributions, written by professionals, researchers and students, cover topics in the field of automatic control systems, electromechanics, electric power engineering and electrical engineering, mechatronics, robotics, automation and vibration technologies. The Zavalishin's Readings conference was established as a tribute to the memory of Dmitry Aleksandrovich Zavalishin (1900-1968) - a Russian scientist, corresponding member of the USSR Academy of Sciences, and founder of the school of valve energy converters based on electric machines and valve converters energy. The first conference was organized by the Institute of Innovative Technologies in Electromechanics and Robotics at the Saint Petersburg State University of Aerospace Instrumentation in 2006. The 2021 conference was held with XV International Conference "Vibration-2021. Vibration technologies, mechatronics and controlled machines" and VI International Conference "Electric drive, electrical technology and electrical equipment of enterprises", and was organized by St. Petersburg State University of Aerospace Instrumentation (SUAI), St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Southwest State University (SWSU) and Ufa State Oil Technical University (USPTU).
This book includes selected peer-reviewed papers presented at third International Conference on Computational and Experimental Methods in Mechanical Engineering held in June 2021 at G.L. Bajaj Institute of Technology and Management, Greater Noida, U.P, India. The book covers broad range of topics in latest research including hydropower, heat transfer, fluid mechanics, advanced manufacturing, recycling and waste disposal, solar energy, thermal power plants, refrigeration and air conditioning, robotics, automation and mechatronics, and advanced designs. The authors are experienced and experts in their field, and all papers are reviewed by expert reviewers in respective field. The book is useful for industry peoples, faculties, and research scholars.
This book presents the basic and fundamental aspects of nanomaterials, its types, and classifications with respect to different factors. It contains methods of preparation and characterization of unique nanostructured materials. Consisting of six chapters, this book appeals to a wide readership from academia and industry professionals and is also useful to undergraduate and graduate students focusing on nanotechnology and nanomaterials, sustainable chemistry, energy conversion and storage, environmental protection, opto-electronics, sensors, and surface and interface science. It also appeals to readers who wish to know about the design of new types of materials with controlled nanostructures.
This book highlights the rapidly emerging field of solution-processed halide perovskite lasers. These amazing materials not only possess exceptional photovoltaic properties, but are also outstanding optical gain media. Halide perovskites are the latest member of solution-processed optical gain media, joining organics and traditional semiconductor colloidal quantum dots. Amplified spontaneous emission and lasing have been demonstrated in various halide perovskite configurations and nanostructures with wavelengths tunable over the visible and infrared wavelengths (400-1000 nm). This book provides comprehensive information on perovskite lasing, starting with some fundamentals of lasers and their basic operating principles. Unambiguous methods for identifying lasing light emission are presented, while the basic optoelectronic properties of perovskite materials are also discussed, with an emphasis on their photophysics, using ultrafast optical spectroscopy techniques. The viability of perovskites as a gain media within a suitable resonator, as well as the characterization methods for optical gain, are highlighted. The book closes with a discussion on the remaining challenges (such as electrical driven lasing and material stabilities) that need to be tackled, and the future of this new family of lasers.
This book contains high-quality papers presented in the conference Recent Advances in Mechanical Infrastructure (ICRAM 2020) held at IITRAM, Ahmedabad, India, from 21-23 August 2020. The topics covered in this book are recent advances in thermal infrastructure, manufacturing infrastructure and infrastructure planning and design.
This book presents a collection of cross-disciplinary research, with contributions addressing all key features of the plant/microbe/ENP nexus in agro-ecosystems. The uptake, transport and transformation of nanoparticles in plants have attracted more and more attention in the past several years. Especially, the impact of Engineered Nanoparticles (ENPs) on bioprocesses; low-, medium- and high-level dose responses in the microbial community of soil; and long-, medium- and short-term exposure responses, particularly microbial nitrogen transformations, are just a few of the aspects involved. Since ENPs are used in many industries, including cosmetics, agriculture, medicine, food technology and waste management, their transport through biogeochemical cycles is an important focus of many studies today. Specifically, ENP-microbe interaction has been analysed with regard to disease treatment for plants; it plays a vital role in disease inhibition by releasing metal ions that act through many pathways - e.g. reactive oxygen species (ROS) generation, DNA transformation and disruption of the cell cycle - to stop cell growth in the pathogen. Due to these properties, ENPs are also used as slow release or delayed release pesticides and fungicides, and as carrier systems for growth-promoting hormones. Despite their multiple uses in various industries, the negative effects of ENPs are still a major concern for the scientific community and consumers alike. For example, their transport to various food chains has been reported to have adverse effects. This raises a degree of doubt concerning a rapidly growing scientific field with major applications in many industries. From a sustainable development perspective and particularly to ensure food security in light of the uncertainty accompanying climate change, it is imperative to address this divergence by focusing on the plant/microbe/ENP nexus.
This book presents state-of-the-art coverage of synthesis of advanced functional materials. Unconventional synthetic routes play an important role in the synthesis of advanced materials as many new materials are metastable and cannot be synthesized by conventional methods. This book presents various synthesis methods such as conventional solid-state method, combustion method, a range of soft chemical methods, template synthesis, molecular precursor method, microwave synthesis, sono-chemical method and high-pressure synthesis. It provides a comprehensive overview of synthesis methods and covers a variety of materials, including ceramics, films, glass, carbon-based, and metallic materials. Many techniques for processing and surface functionalization are also discussed. Several engineering aspects of materials synthesis are also included. The contents of this book are useful for researchers and professionals working in the areas of materials and chemistry.
Twentieth century Russian wristwatches are too costly for many native buyers, but they are still inexpensive for Western Collectors, and are becoming extremely popular. Watch faces commemorate all the great moments of Russian and Soviet history-from Yuri Gagarin's space flight to the Summit meeting between Gorbachev and George Bush-and celebrate Russian culture with images of native costumes from Chechnya to the Ukraine. Collectors have long clamored for a definitive reference and this new book will satisfy even the most avid enthusiast, with photographs of over 500 watches manufactured in Russia and the USSR during the second half of this century, and explanations of their styles, workings, and manufacturers. Poljot, Wostok, and Slava wristwatches are covered, along with a sampling of pocket watches, deck watches, and marine chronometers. This book is a must for serious collectors in the growing field of Russian timekeepers. |
![]() ![]() You may like...
Interpolation and Sidon Sets for Compact…
Colin Graham, Kathryn E. Hare
Hardcover
R3,577
Discovery Miles 35 770
The Book of Frogs - A Life-Size Guide to…
Tim Halliday
Hardcover
Lizards of Patagonia - Diversity…
Mariana Morando, Luciano J. Avila
Paperback
R6,336
Discovery Miles 63 360
Introduction to Basic Aspects of the…
Otto Appenzeller, Guillaume J. Lamotte, …
Hardcover
R3,701
Discovery Miles 37 010
Constructive Approximation
Ronald A. DeVore, George G Lorentz
Hardcover
R3,997
Discovery Miles 39 970
|