![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Other manufacturing technologies > Precision instruments manufacture
This book presents part of the proceedings of the Manufacturing and Materials track of the iM3F 2020 conference held in Malaysia. This collection of articles deliberates on the key challenges and trends related to manufacturing as well as materials engineering and technology in setting the stage for the world in embracing the fourth industrial revolution. It presents recent findings with regards to manufacturing and materials that are pertinent towards the realizations and ultimately the embodiment of Industry 4.0, with contributions from both industry and academia.
The book highlights the research contributions of the interdigitated (IDT) sensors over a period of two decades in the field of sensing technology. It presents theory, design, and practical realization of the IDT sensors working over wide frequency rage for scientific, industrial, and consumer applications. The IDT sensors have been widely investigated for wide range of sensing applications including agriculture, environmental monitoring, structural health monitoring, health care, food and beverage testing, testing of dielectric material, proximity sensing, microfluidic application, automatic dispensing system etc. Hence, importance of IDT sensors is growing continuously for future applications. As such, it offers a key reference guide on IDT sensors for students, applied physicists, material scientists, engineers, sensors designers and technicians.
Over the last twenty years there has been tremendous growth in the research and development of sensors and sensor signal processing methods. Advances in materials and fabrication techniques have led to a departure from traditional sensor types and the development of novel sensing techniques and devices, many of which are now finding favor in industry. Novel Sensors and Sensing provides an introduction to modern sensor types and sensor signal processing methods, with emphasis placed on the underlying physics and the generic operating principles involved. It includes a review of the fundamentals of measurement and instrumentation and covers the principle types of modern sensor-resonator, semiconductor based, and optical fiber (including an overview of optical propagation and transmission.) The final chapter of the book is devoted to flow measurement, an area that has benefited greatly from the developments in novel sensing devices and techniques.
This book presents peer-reviewed articles from the International Conference on Optics and Electro-optics, ICOL-2019, held at Dehradun in India. It brings together leading researchers and professionals in the field of optics/optical engineering/optical materials and provides a platform to present and establish collaborations in this important area, with the theme "Trends in Electro-optics Instrumentation for Strategic Applications". Topics covered but not limited to are Optical Engineering, Optical Thin Films, Optical Materials, IR Sensors, Image Processing & Systems, Photonic Band Gap Materials, Adaptive Optics, Optical Image Processing & Holography, Lasers, Fiber Lasers & its Applications, Diffractive Optics, Innovative packaging of Optical Systems, Nanophotonics Devices and Applications, Optical Interferometry & Metrology, Terahertz, Millimeter Wave & Microwave Photonics, Fiber, Integrated & Nonlinear Optics and Optics and Electro-optics for Strategic Applications.
This book provides comprehensive coverage of the most recent progress and developments in the field of magnetic nanoparticles, with special emphasis on new materials design approaches for magnetic nanoarchitectures, advanced characterization techniques, and a wide range of applications areas including permanent magnets, biomedicine, and life sciences. The book also features an exhaustive section on fundamentals, covering single particle effects, surface effects, and interparticle interactions. The book delivers a strong focus throughout on the multidisciplinarity of the subject spanning physics, chemistry, engineering, biology, medicine, and environmental science. This forward-looking contributed volume highlights future perspectives and areas of emerging research, and will be of great interest to advanced undergraduates, as well as researchers in academia and industry.
This book gathers four papers authored by Victor Bravo and Nicolas Di Sbroiavacca, Oil and Natural Gas Engineers, specialized in Energy Economics. The main axis of the book is the application of the exploitation techniques of Oil and Natural Gas in Argentina, by the so-called "conventional" methods, in comparison with the so-called "Fracking",(name massively used in the First World and particularly in the United States of America). Argentina has important Oil and Natural Gas resources in different regions of its wide geography. To develop these "non-conventional" techniques has generated endless controversies all over the world, mostly due to its estimated environmental impact and the need of significant requirement of large capitals for investment. Argentina is not out of this relevant controversy because in the mind of the maximum national authorities, fracking is one of the main factors that may contribute to generate monetary funds devoted to the payment of the immense foreign debt of this country. Other authors estimate that it is not possible to develop our country just on the basis of the massive exploitation and boundless export of natural resources. Consequently, fracking is undoubtedly a topic of National Energy Politics. In this scenario, a previous analysis of the National Energy Politics of the recent governments of Argentina, after the bloody military dictatorship of 1976-1983 and the return to democratic governments in December 1983. This analysis is done over the chapters "Analysis of the National Law N 27007 (known as the "Hydrocarbon Resources Law") and the Oil and Natural Gas politics", the "Oil and Natural Gas Politics of the period from 2003 to 2014" and "The Argentine Energy Politics during the 2014-2018 period". Later on, the "Fracking" case is fully developed with two complementary analyses. One of them is basically centered on the technical and prospective scenarios for "fracking": "Shale Oil and Shale Gas in Argentina: Situation and Perspectives". The other one, "A technical opinion about Fracking", contemplates the impacts resulting from the use of these techniques, especially those concerning the environment. Anyhow, each of the chapters are self-contained, thus permitting separate reading of any of them.
"Semiconductor-On-Insulator Materials for NanoElectronics Applications is devoted to the fast evolving field of modern nanoelectronics, and more particularly to the physics and technology of nanoelectronic devices built on semiconductor-on-insulator (SemOI) systems. The book contains the achievements in this field from leading companies and universities in Europe, USA, Brazil and Russia. It is articulated around four main topics: 1. New semiconductor-on-insulator materials; 2. Physics of modern SemOI devices; 3. Advanced characterization of SemOI devices; 4. Sensors and MEMS on SOI. "Semiconductor-On-Insulator Materials for NanoElectonics Applications is useful not only to specialists in nano- and microelectronics but also to students and to the wider audience of readers who are interested in new directions in modern electronics and optoelectronics.
The book covers the latest developments in biologically-inspired and derived nanomedicine for cancer therapy. The purpose of the book is to illustrate the significance of naturally-mimicking systems for enhancing the dose delivered to the tumor, to improve stability, and prolong the circulation time. Moreover, readers are presented with advanced materials such as adjuvants for immunostimulation in cancer vaccines. The book also provides a comprehensive overview of the current status of academic research. This is an ideal book for students, researchers, and professors working in nanotechnology, cancer, targeted drug delivery, controlled drug release, materials science, and biomaterials as well as companies developing cancer immunotherapy.
Force and Position Control of Mechatronic Systems provides an overview of the general concepts and technologies in the area of force and position control. Novel ideas and innovations related to this area are presented and reported in detail, and examples of applications in medical technology are given. The book begins by introducing force sensing, and modelling of contacting objects. In then moves steadily through a variety of topics, including: * disturbance observer-based force estimation; * force-based supervisory control; * stabilization systems; * controller design; and * control of tube insertion procedures. This book will be of interest to researchers, engineers and students interested in force control, particularly those with a focus on medical applications of these ideas. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This volume studies, in chronological order, three types of large clocks-wall, cabinet and free-standing, with particular attention to clocks from France, England, Holland, Scandinavia and the German-speaking countries. The emphasis is on French clocks due to recent great interest in the trade of these among collectors. The English clocks, still favored by a large group of collectors, are strongly represented here and there are several beautiful examples from Holland. The German speaking area, including Austria, Germany, and Switzerland are also well represented especially with clocks from south Germany-a delight for lovers and collectors of the Baroque and Rocco clocks. European Pendulum Clocks is essential for the collector of clocks, dealers, auction houses, museums, and anyone awed by the beauty and craftsmanship of these fascinating timepieces.
Challenged by stringent regulations, vigorous competition, and liability lawsuits, medical device manufactures must develop safe, reliable, and cost-effective products, and managing and reducing risk is a vital element of reaching that goal. These guidelines focus on Failure Modes and Effects Analysis (FMEA) and its application throughout the life cycle of a medical device. It outlines the major U.S. and E.U. standards and regulations and provides a detailed yet easy-to-read overview of risk management and risk analysis methodologies, common FMEA pitfalls, and FMECA-Failure Mode, Effects, and Criticality Analysis.
This informative book compiles the most up-to-date applications of nanobiosensors in fields ranging from agriculture to medicine. The introductory section describes different types of nanobiosensors and use of nanobiosensors towards a sustainable environment. The applications are divided into four broad sections for easy reading and understanding. The book discusses how manipulation, control and integration of atoms and molecules are used to form materials, structures, devices and systems in nano-scale. Chapters in the book shed light on the use of nanosensors in diagnostics and medical devices. Application in food processing as well as in cell signaling is also described. Nanobiosensors have immense use, and this book captures the most important ones.
Wireless Sensor Networks presents a comprehensive and tightly organized compilation of chapters that surveys many of the exciting research developments taking place in this field. Chapters are written by several of the leading researchers exclusively for this book. Authors address many of the key challenges faced in the design, analysis and deployment of wireless sensor networks. Included is coverage of low-cost sensor devices equipped with wireless interfaces, sensor network protocols for large scale sensor networks, data storage and compression techniques, security architectures and mechanisms, and many practical applications that relate to use in environmental, military, medical, industrial and home networks. The book is organized into six parts starting with basic concepts and energy efficient hardware design principles. The second part addresses networking protocols for sensor networks and describes medium access control, routing and transport protocols. In addition to networking, data management is an important challenge given the high volumes of data that are generated by sensor nodes. deals with security protocols and mechanisms for wireless sensor networks. Sensor network localization systems and network management techniques are covered in Part V. The final part focuses on target detection and habitat monitoring applications of sensor networks. This book is intended for researchers starting work in the field and for practitioners seeking a comprehensive overview of the various aspects of building a sensor network. It is also an invaluable reference resource for all wireless network professionals.
This book highlights the main advances in fiber electronics, like fiber-shaped solar cells, batteries, supercapacitors, sensors, light-emitting devices, memristors and communication devices from the standpoints of material synthesis, structure design and property enhancement. It focuses on revealing the separation and transport mechanisms of charges, establishing transport equations for electrons and ions, and emphasizing integration methods in fiber devices. In closing, it reviews emerging applications based on fiber devices that could accelerate their large-scale production in the near future. Given its scope, the book offers a valuable resource for scientists, engineers, graduate students and undergraduate students in a wide variety of fields such as advanced materials, energy, electrochemistry, applied physics, nanoscience and nanotechnology, polymer science and engineering and biomedical science. It also benefits many non-specialist industrialists who are working to promote new technologies.
This book highlights a novel and holistic approach to multiscaled PVA bionanocomposite films used for electrical sensing, medical and packaging applications. With a combination of material characterization and modeling to understand the effect of nanoparticle size and shape, as well as 3D interphase properties and features such as interphase modulus and nanoscale dimensions, this book substantiates how excellent mechanical and thermal properties of these materials are achieved. Also it addresses the importance of using economical and ecofriendly bionanocomposites as potential green materials to support the goal of environmental sustainability with multifunctional properties.
This book covers remarkable contemporary nanomaterials such as carbon nanomaterials, nanoclays, quantum dots, MXene, and metal-organic frameworks. Each chapter discusses the synthesis techniques, characterization methods, properties, and the nanomaterials' use in different aspects of biomedical, energy, polymers, material construction, biosensors, coatings, and catalysis. Moreover, commercialization challenges and environmental risks of nanomaterials are also covered in depth. The book provides an understanding of the fundamental properties, limitations and challenges in nanomaterials synthesis, serving as a valuable resource for researchers, graduate students, academicians, and consultants working with nanomaterials for engineering applications.
This book provides a single-source reference on carbon nanotubes for interconnect applications. It presents the recent advances in modelling and challenges of carbon nanotube (CNT)-based VLSI interconnects. Starting with a background of carbon nanotubes and interconnects, this book details various aspects of CNT interconnect models, the design metrics of CNT interconnects, crosstalk analysis of recently proposed CNT interconnect structures, and geometries. Various topics covered include the use of semiconducting CNTs around metallic CNTs, CNT interconnects with air gaps, use of emerging ultra low-k materials and their integration with CNT interconnects, and geometry-based crosstalk reduction techniques. This book will be useful for researchers and design engineers working on carbon nanotubes for interconnects for both 2D and 3D integrated circuits.
This book gives an overview of nanostructures and nanomaterials applied in the fields of energy and organic electronics. It combines the knowledge from advanced deposition and processing methods of nanomaterials such as laser-based growth and nanopatterning and state-of-the-art characterization techniques with special emphasis on the optical, electrical, morphological, surface and mechanical properties. Furthermore it contains theoretical and experimental aspects for different types of nanomaterials such as nanoparticles, nanotubes and thin films for organic electronics applications. The international group of authors specifically chosen for their distinguished expertise belong to the academic and industrial world in order to provide a broader perspective. The authors take an interdisciplinary approach of physics, chemistry, engineering, materials science and nanotechnology. It appeals to researchers and graduate students.
This book gathers the latest advances, innovations, and applications in the field of multibody and mechatronic systems. Topics addressed include the analysis and synthesis of mechanisms; dynamics of multibody systems; design algorithms for mechatronic systems; robots and micromachines; experimental validations; theory of mechatronic simulation; mechatronic systems for rehabilitation and assistive technologies; mechatronic systems for energy harvesting; virtual reality integration in multibody and mechatronic systems; multibody design in robotic systems; and control of mechatronic systems. The contents reflect the outcomes of the 7th International Symposium on Multibody Systems and Mechatronics (7th MuSMe) in 2020, within the framework of the FEIbIM Commission for Robotics and Mechanisms and IFToMM Technical Committees for Multibody Dynamics and for Robotics and Mechatronics.
This book brings together investigations which combine theoretical and experimental results related to such systems as flexure hinges and compliant mechanisms for precision applications, the non-linear analytical modeling of compliant mechanisms, mechanical systems using compliance as a bipedal robot and reconfigurable tensegrity systems and micro-electro-mechanical systems (MEMS) as energy efficient micro-robots, microscale force compensation, magnetoelectric micro-sensors, acoustical actuators and the wafer bonding as a key technology for the MEMS fabrication. The volume gathers twelve contributions presented at the 5th Conference on Microactuators, Microsensors and Micromechanisms (MAMM), held in Ilmenau, Germany in November 2020. The aim of the conference was to provide a special opportunity for a know-how exchange and collaboration in various disciplines concerning systems pertaining to micro-technology. The conference was organized under the patronage of IFToMM (International Federation for the Promotion of Mechanism and Machine Science).
This book is an effort to tether all the exuberant observations on adding nanomaterial in the TPE matrix. With an enhanced processing property along with amplified recyclability and reprocessing feature, thermoplastic elastomers (TPE) proves to be one of the most significant polymeric materials till date. As the scientific world evolves, these advanced materials have attuned themselves with various anisotropic nanomaterials to induce an enhanced property effect on the final product. On an additional note, authors have done extensive research on graphene, the most multifaceted element in the filler family keeping TPE and its derivate as the matrix martial. Cogitating the idea of a multidimensional readership, authors have analyzed the synthesis, derivatization, and properties of graphene and its derivatives separately. Apart from reviewing the future prospects and the potential application of these nano-filled advanced materials, they have kept the structure-property relationship of graphene-based composites at the cynosure to provide firm understanding on the blossoming of these elastomeric composites. The authors believe this book is a potential content for both professionals and academicians.
Thin Film Magnetoresistive Sensors presents a comprehensive review
of thin film magnetoresistive (MR) sensors, including the theory of
MR effects as well as the design, fabrication, properties, and
applications of MR sensors. With over 1,000 references, the book
fully reviews the theory, development, and use of these sensors. It
provides essential information about the performance of various
kinds of sensors, including permalloy magnetoresistors, spin valve
sensors, multilayer sensors, colossal effect sensors, spin
dependent tunneling sensors, and magnetoimpedance sensors.
This book presents new data on combustion processes for practical applications, discussing fire safety issues in the development of flame arresters and the use of noble metals in hydrogen recombiners for nuclear power plants. It establishes the basic principles of production of metal nanostructures, namely nanopowders of metals and compact products made of them, with the preservation of the unique properties of nanoproducts.
This book presents the proceedings of the International Conference on Recent Trends in Materials and Devices (ICRTMD 2019) held in India. It brings together academicians, scientists and industrialists from various fields for the establishment of enduring connections to solve the common global challenges across a number of disciplines. The conference provides a platform to tackle complex problems from a range of perspectives, thereby modeling integrated, solution-focused thinking and partnerships.
This book deals with the electro-chemo-mechanical properties characteristic of and unique to solid electrode surfaces, covering interfacial electrochemistry and surface science. Electrochemical reactions such as electro-sorption, electro-deposition or film growth on a solid electrode induce changes in surface stress or film stress that lead to transformation of the surface phase or alteration of the surface film. The properties of solid electrode surfaces associated with the correlation between electrochemical and mechanical phenomena are named "electro-chemo-mechanical properties". The book first derives the surface thermodynamics of solid electrodes as fundamentals for understanding the electro-chemo-mechanical properties. It also explains the powerful techniques for investigating the electro-chemo-mechanical properties, and reviews the arguments for derivation of surface thermodynamics of solid electrodes. Further, based on current experimental findings and theories, it discusses the importance of the contribution of surface stress to the transformation of surface phases, such as surface reconstruction and underpotential deposition in addition to the stress evolution during film growth and film reduction. Moreover, the book describes the nano-mechanical properties of solid surfaces measured by nano-indentation in relation to the electro-chemo-mechanical properties. This book makes a significant contribution to the further development of numerous fields, including electrocatalysis, materials science and corrosion science. |
![]() ![]() You may like...
Spanish Language Learning for Beginner's…
Excel Language Lessons
Hardcover
R541
Discovery Miles 5 410
Critical Views on Teaching and Learning…
Jose Aldemar Alvarez V., Cathy Amanti, …
Hardcover
R2,847
Discovery Miles 28 470
Immobilization Strategies - Biomedical…
Anuj Tripathi, Jose Savio Melo
Hardcover
R4,605
Discovery Miles 46 050
Taking College Teaching Seriously…
Gail O. Mellow, Diana D Woolis, …
Hardcover
R4,443
Discovery Miles 44 430
|