![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Production engineering
Synthetic biology is becoming one of the most dynamic new fields of biology, with the potential to revolutionize the way we do biotechnology today. By applying the toolbox of engineering disciplines to biology, a whole set of potential applications become possible ranging very widely across scientific and engineering disciplines. Some of the potential benefits of synthetic biology, such as the development of low-cost drugs or the production of chemicals and energy by engineered bacteria are enormous. There are, however, also potential and perceived risks due to deliberate or accidental damage. Also, ethical issues of synthetic biology just start being explored, with hardly any ethicists specifically focusing on the area of synthetic biology. This book will be the first of its kind focusing particularly on the safety, security and ethical concerns and other relevant societal aspects of this new emerging field. The foreseen impact of this book will be to stimulate a debate on these societal issues at an early stage. Past experiences, especially in the field of GM-crops and stem cells, have shown the importance of an early societal debate. The community and informed stakeholders recognize this need, but up to now discussions are fragmentary. This book will be the first comprehensive overview on relevant societal issues of synthetic biology, setting the scene for further important discussions within the scientific community and with civil society.
In recent years the use of liquid—liquid extraction equipment has attracted widespread interest from all major chemical engineering, petroleum and pharmaceutical companies as well as university-based scientists and engineers. Liquid—Liquid Extraction Equipment presents :
Quality control is a constant priority in electrical, mechanical, aeronautical, and nuclear engineering - as well as in the vast domain of electronics, from home appliances to computers and telecommunications. Quality Control Applications provides guidance and valuable insight into quality control policies; their methods, their implementation, constant observation and associated technical audits. What has previously been a mostly mathematical topic is translated here for engineers concerned with the practical implementation of quality control. Once the fundamentals of quality control are established, Quality Control Applications goes on to develop this knowledge and explain how to apply it in the most effective way. Techniques are described and supported using relevant, real-life, case studies to provide detail and clarity for those without a mathematical background. Among the many practical examples, two case studies dramatize the importance of quality assurance: A shot-by-shot analysis of the errors made in the Fukushima Daiichi nuclear disaster; and the engineering failure with new technology due to the absence of quality control in an alternative energy project. This clear and comprehensive approach makes Quality Control Applications an essential reference for those studying engineering as well industry professionals involved in quality control across product and system design.
Location analysis has matured from an area of theoretical inquiry that was designed to explain observed phenomena to a vibrant field which can be and has been used to locate items as diverse as landfills, fast food outlets, gas stations, as well as politicians and products in issue and feature spaces. Modern location science is dealt with by a diverse group of researchers and practitioners in geography, economics, operations research, industrial engineering, and computer science. Given the tremendous advances location science has seen from its humble beginnings, it is time to look back. The contributions in this volume were written by eminent experts in the field, each surveying the original contributions that created the field, and then providing an up-to-date review of the latest contributions. Specific areas that are covered in this volume include: * The three main fields of inquiry: minisum and minimax problems and covering models * Nonstandard location models, including those with competitive components, models that locate undesirable facilities, models with probabilistic features, and problems that allow interactions between facilities * Descriptions and detailed examinations of exact techniques including the famed Weiszfeld method, and heuristic methods ranging from Lagrangean techniques to Greedy algorithms * A look at the spheres of influence that the facilities generate and that attract customers to them, a topic crucial in planning retail facilities * The theory of central places, which, other than in mathematical games, where location science was born
This book highlights the sustainability aspects of additive manufacturing (AM) in two separate volumes. It describes the details of this technology and its implications on the entire product life cycle sustainability, as well as embedded carbon and the further research needed to move this technology towards sustainable, mainstream production. Sustainability is not new for any area of industry, including additive manufacturing, and there are currently a number of ongoing research projects, both in industry and in academic institutions, that are investigating sustainability, embedded carbon and research activities which would need to be done in the future to move this technology towards sustainable mainstream production.
Dr. Jean Huxsoll and a team of distinguished biotechnology industry experts from the U.S. and Europe offer a wealth of practical guidelines to designing, implementing, and managing QA systems to assure that biopharmaceutical products meet standards for safety purity, and potency. Quality Assurance for Biopharmaceuticals covers all important theoretical and practical concerns, including detailed guidelines to meeting GMP compliance; quality assurance of production; quality assurance of analytical methods; advanced documentation, sampling, and validation techniques; comprehensive coverage of regulatory issues in the U.S., Europe, and Japan; and much more.
This book presents the proceedings of the International Conference on Durability of Critical Infrastructure. Monitoring and Testing held in Satov, Czech Republic from 6 to 9 December 2016. It discusses the developments in the theoretical and practical aspects in the fields of Safety, Sustainability and Durability of the Critical Infrastructure. The contributions are dealing with monitoring and testing of structural and composite materials with a new methods for their using for protection and prevention of the selected objects.
Ultra-precision machining is a promising solution for achieving excellent machined surface quality and sophisticated micro/nano-structures that influence the applications of components and devices. Further, given the ultrathin layer of material removed, it is a highly coupled process between cutting tool and material. In this book, scientists in the fields of mechanical engineering and materials science from China, Ukraine, Japan, Singapore present their latest research findings regarding the simulation and experiment of material-oriented ultra-precision machining. Covering various machining methods (cutting, grinding, polishing, ion beam and laser machining) and materials (metal, semiconductor and hard-brittle ceramics), it mainly focuses on the evaluation of the fundamental mechanisms and their implementation in processing optimization for different materials. It is of significant theoretical and practical value for guiding the fabrication of ultra-smooth and functional surfaces using ultra-precision machining.
This book provides a detailed overview of various parameters/factors involved in inventory analysis. It especially focuses on the assessment and modeling of basic inventory parameters, namely demand, procurement cost, cycle time, ordering cost, inventory carrying cost, inventory stock, stock out level, and stock out cost. In the context of economic lot size, it provides equations related to the optimum values. It also discusses why the optimum lot size and optimum total relevant cost are considered to be key decision variables, and uses numerous examples to explain each of these inventory parameters separately. Lastly, it provides detailed information on parameter estimation for different sectors/products. Written in a simple and lucid style, it offers a valuable resource for a broad readership, especially Master of Business Administration (MBA) students.
This book contains the latest research on intelligent holonic execution. It presents a conceptual model for Holonic Manufacturing Execution that draws together research threads from both holonics and multi-agent systems. The book presents the model by mapping it onto two current BDI programming frameworks, and uses this for two separate implementations of an execution system for an industrial strength robotic assembly cell. This work also introduces the Team Programming paradigm.
This book provides extensive information on the key technical design disciplines, education programs, international best practices and modes of delivery that are aimed at preparing a trans-disciplinary design workforce for the future. It also presents a comprehensive overview of the scope of, and state of the art in, design education. The book highlights signature design education programs from around the globe and across all levels, in both traditional and distance learning settings. Additionally, it discusses professional societies for designers and design educators, as well as the current standards for professional registration, and program accreditation. Reflecting recent advances and emerging trends, it offers a valuable handbook for design practitioners and managers, curriculum designers and program leaders alike. It will also be of interest to students and academics looking to develop a career related to the more technical aspects of design.
This book discusses challenges and solutions for the required information processing and management within the context of multi-disciplinary engineering of production systems. The authors consider methods, architectures, and technologies applicable in use cases according to the viewpoints of product engineering and production system engineering, and regarding the triangle of (1) product to be produced by a (2) production process executed on (3) a production system resource. With this book industrial production systems engineering researchers will get a better understanding of the challenges and requirements of multi-disciplinary engineering that will guide them in future research and development activities. Engineers and managers from engineering domains will be able to get a better understanding of the benefits and limitations of applicable methods, architectures, and technologies for selected use cases. IT researchers will be enabled to identify research issues related to the development of new methods, architectures, and technologies for multi-disciplinary engineering, pushing forward the current state of the art.
This book gathers contributions presented at the 9th Workshop on Cyclostationary Systems and Their Applications, held in Grodek nad Dunajcem, Poland in February 2016. It includes both theory-oriented and practice-oriented chapters. The former focus on heavy-tailed time series and processes, PAR models, rational spectra for PARMA processes, covariance invariant analysis, change point problems, and subsampling for time series, as well as the fraction-of-time approach, GARMA models and weak dependence. In turn, the latter report on case studies of various mechanical systems, and on stochastic and statistical methods, especially in the context of damage detection. The book provides students, researchers and professionals with a timely guide to cyclostationary systems, nonstationary processes and relevant engineering applications.
Today's society is completely dependent on critical networks such as water supply, sewage, electricity, ICT and transportation. Risk and vulnerability analyses are needed to grasp the impact of threats and hazards. However, these become quite complex as there are strong interdependencies both within and between infrastructure systems. Risk and Interdependencies in Critical Infrastructures: A guideline for analysis provides methods for analyzing risks and interdependencies of critical infrastructures. A number of analysis approaches are described and are adapted to each of these infrastructures. Various approaches are also revised, and all are supported by several examples and illustrations. Particular emphasis is given to the analysis of various interdependencies that often exist between the infrastructures. Risk and Interdependencies in Critical Infrastructures: A guideline for analysis provides a good tool to identify the hazards that are threatening your infrastructures, and will enhance the understanding on how these threats can propagate throughout the system and also affect other infrastructures, thereby identifying useful risk reducing measures. It is essential reading for municipalities and infrastructure owners that are obliged to know about and prepare for the risks and vulnerabilities of the critical infrastructures for which they are responsible.
In the industrial design and engineering field, product lifecycle, product development, design process, Design for X, etc., constitute only a small sample of terms related to the generation of quality products. Current best practices cover widely different knowledge domains in trying to exploit them to the best advantage, individually and in synergy. Moreover, standards become increasingly more helpful in interfacing these domains and they are enlarging their coverage by going beyond the single domain boundary to connect closely different aspects of the product lifecycle. The degree of complexity of each domain makes impossible the presence of multipurpose competencies and skills; there is almost always the need for interacting and integrating people and resources in some effective way. These are the best conditions for the birth of theories, methodologies, models, architectures, systems, procedures, algorithms, software packages, etc., in order to help in some way the synergic work of all the actors involved in the product lifecycle. This brief introduction contains all the main themes developed in this book, starting from the analysis of the design and engineering scenarios to arrive at the development and adoption of a framework for product design and process reconfiguration. In fact, the core consists of the description of the Design GuideLines Collaborative Framework (DGLs-CF), a methodological approach that generates a collaborative environment where designers, manufacturers and inspectors can find the right and effective meeting point to share their knowledge and skills in order to contribute to the optimum generation of quality products.
This book studies storage policies in warehousing systems and maintenance-support strategies for critical operational systems in warehouses, which are the most important issues affecting operational efficiency of warehousing systems. It expands on the theory of class-based storage by considering a finite number of items in store, and also introduces the maintenance-support strategy founded on performance-based contract theory. It is a valuable resource for researchers, practitioners and engineers in the fields of industrial engineering, operations management, operations research and management science.
The book is a selection of invited chapters, all of which deal with various aspects of mathematical and statistical models and methods in reliability. Written by renowned experts in the field of reliability, the contributions cover a wide range of applications, reflecting recent developments in areas such as survival analysis, aging, lifetime data analysis, artificial intelligence, medicine, carcinogenesis studies, nuclear power, financial modeling, aircraft engineering, quality control, and transportation. "Mathematical and Statistical Models and Methods in Reliability" is an excellent reference text for researchers and practitioners in applied probability and statistics, industrial statistics, engineering, medicine, finance, transportation, the oil and gas industry, and artificial intelligence.
Integral processes with dead time are frequently encountered in the process industry; typical examples include supply chains, level control and batch distillation columns. Special attention must be paid to their control because they lack asymptotic stability (they are not self-regulating) and because of their delays. As a result, many techniques have been devised to cope with these hurdles both in the context of single-degree-of-freedom (proportional-integral-differential (PID)) and two-degree-of-freedom control schemes. Control of Integral Processes with Dead Time provides a unified and coherent review of the various approaches devised for the control of integral processes, addressing the problem from different standpoints. In particular, the book treats the following topics: how to tune a PID controller and assess its performance; how to design a two-degree-of-freedom control scheme in order to deal with both the set-point following and load disturbance rejection tasks; how to modify the basic Smith predictor control scheme in order to cope with the presence of an integrator in the process; and how to address the presence of large process dead times. The methods are presented sequentially, highlighting the evolution of their rationale and implementation and thus clearly characterising them from both academic and industrial perspectives. Control of Integral Processes with Dead Time will serve academic researchers in systems with dead time both as a reference and stimulus for new ideas for further work and will help industry-based control and process engineers to solve their control problems using the most suitable technique and achieving the best cost: benefit ratio."
In continuation of the FRINGE Workshop Series this Proceeding contains all contributions presented at the 7. International Workshop on Advanced Optical Imaging and Metrology. The FRINGE Workshop Series is dedicated to the presentation, discussion and dissemination of recent results in Optical Imaging and Metrology. Topics of particular interest for the 7. Workshop are: - New methods and tools for the generation, acquisition, processing, and evaluation of data in Optical Imaging and Metrology (digital wavefront engineering, computational imaging, model-based reconstruction, compressed sensing, inverse problems solution) - Application-driven technologies in Optical Imaging and Metrology (high-resolution, adaptive, active, robust, reliable, flexible, in-line, real-time) - High-dynamic range solutions in Optical Imaging and Metrology (from macro to nano) - Hybrid technologies in Optical Imaging and Metrology (hybrid optics, sensor and data fusion, model-based solutions, multimodality) - New optical sensors, imaging and measurement systems (integrated, miniaturized, in-line, real-time, traceable, remote) Special emphasis is put on new strategies, taking into account the active combination of physical modeling, computer aided simulation and experimental data acquisition. In particular attention is directed towards new approaches for the extension of existing resolution limits that open the gates to wide-scale metrology, ranging from macro to nano, by considering dynamic changes and using advanced optical imaging and sensor systems.
Focusing on the theory and applications of point processes, Point Processes for Reliability Analysis naturally combines classical results on the basic and advanced properties of point processes with recent theoretical findings of the authors. It also presents numerous examples that illustrate how general results and approaches are applied to stochastic description of repairable systems and systems operating in a random environment modelled by shock processes. The real life objects are operating in a changing, random environment. One of the ways to model an impact of this environment is via the external shocks occurring in accordance with some stochastic point processes. The Poisson (homogeneous and nonhomogeneous) process, the renewal process and their generalizations are considered as models for external shocks affecting an operating system. At the same time these processes model the consecutive failure/repair times of repairable engineering systems. Perfect, minimal and intermediate (imperfect) repairs are discussed in this respect. Covering material previously available only in the journal literature, Point Processes for Reliability Analysis provides a survey of recent developments in this area which will be invaluable to researchers and advanced students in reliability engineering and applied mathematics.
The pace of development in knowledge and know-how in the Organisation Sciences, Logistics and Information Technology is rapid. However, the gap between those who practice these sciences and the practicing manager is becoming larger rather than smaller. The Delft Systems Approach sets out to close the gap between theory and practice, and to achieve the following goals:
The Delft Systems Approach is divided into three parts. Part I principally describes a fundamental approach for analysing industrial systems, which emphasizes a concept that can be used by all disciplines involved, and makes a logical systematic combination of quantitative and qualitative modelling. This approach is used for the analysis of industrial systems. Part II is concerned with the use of these models in the design of (future) systems. Finally, Part III contains three comprehensive cases from the authorsa (TM) own practical experiences. All theoretical concepts are directly illustrated with a practical example.
This book deals with a novel and practical advanced method for control of tandem cold metal rolling processes based on the emerging state-dependent Riccati equation technique. After a short history of tandem cold rolling, various types of cold rolling processes are described. A basic mathematical model of the process is discussed, and the diverse conventional control methods are compared. A detailed treatment of the theoretical and practical aspects of the state-dependent algebraic Riccati equation technique is given, with specific details of the new procedure described and results of simulations performed to verify the control model and overall system performance with the new controller coupled to the process model included. These results and data derived from actual operating mills are compared showing the improvements in performance using the new method. Material is included which shows how the new technique can be extended to the control of a broad range of large-scale complex nonlinear processes.
Supervision, condition-monitoring, fault detection, fault diagnosis and fault management play an increasing role for technical processes and vehicles in order to improve reliability, availability, maintenance and lifetime. For safety-related processes fault-tolerant systems with redundancy are required in order to reach comprehensive system integrity. This book is a sequel of the book Fault-Diagnosis Systems published in 2006, where the basic methods were described. After a short introduction into fault-detection and fault-diagnosis methods the book shows how these methods can be applied for a selection of 20 real technical components and processes as examples, such as: Electrical drives (DC, AC) Electrical actuators Fluidic actuators (hydraulic, pneumatic) Centrifugal and reciprocating pumps Pipelines (leak detection) Industrial robots Machine tools (main and feed drive, drilling, milling, grinding) Heat exchangers Also realized fault-tolerant systems for electrical drives, actuators and sensors are presented. The book describes why and how the various signal-model-based and process-model-based methods were applied and which experimental results could be achieved. In several cases a combination of different methods was most successful. The book is dedicated to graduate students of electrical, mechanical, chemical engineering and computer science and for engineers.
This book provides readers an understanding of the implementation of Enterprise Risk Management (ERM) for international construction operations. In an extended case study, it primarily focuses on Chinese construction firms (CCFs) based in Singapore. In this regard, the book explains the differences and similarities between Risk Management (RM), Project Risk Management (PRM) and ERM in the construction industry, and examines their linkages for international construction operations in a broader context. The explanation elaborates on how companies may adopt and implement RM, PRM and ERM as appropriate in their various operations, both in their home market as well as in overseas host markets. The book also reviews the whole spectrum of work relating to organizational behavior (OB) as one of the key underpinnings for companies to evaluate and implement ERM. It will benefit practitioners from the industry as well as academics interested in the implementation of ERM practices in international construction operations. |
You may like...
SILKE: South African Income Tax 2026
Madeleine Stiglingh, Jolanie Sune Wilcocks, …
Paperback
A Student's Approach To Taxation In…
A. Oosthuizen, Karina Coetzee, …
Paperback
Graded Questions On Income Tax In South…
Kevin Mitchell, Lindsay Mitchell
Paperback
R1,172
Discovery Miles 11 720
Badass Trader - How To Trade Your Way To…
Robert J Van Eyden
Paperback
|