![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Production engineering
This volume gathers the peer reviewed papers presented at the 4th edition of the International Workshop "Service Orientation in Holonic and Multi-agent Manufacturing - SOHOMA'14" organized and hosted on November 5-6, 2014 by the University of Lorraine, France in collaboration with the CIMR Research Centre of the University Politehnica of Bucharest and the TEMPO Laboratory of the University of Valenciennes and Hainaut-Cambresis. The book is structured in six parts, each one covering a specific research line which represents a trend in future manufacturing: (1) Holonic and Agent-based Industrial Automation Systems; (2) Service-oriented Management and Control of Manufacturing Systems; (3) Distributed Modelling for Safety and Security in Industrial Systems; (4) Complexity, Big Data and Virtualization in Computing-oriented Manufacturing; (5) Adaptive, Bio-inspired and Self-organizing Multi-Agent Systems for Manufacturing and (6) Physical Internet Simulation, Modelling and Control. There is a clear orientation of the SOHOMA'14 workshop towards complexity, which is a common view of all six parts. There is need for a framework allowing the development of manufacturing cyber physical systems including capabilities for complex event processing and data analytics which are expected to move the manufacturing domain closer towards cloud manufacturing within contextual enterprises. Recent advances in sensor, communication and intelligent computing technologies made possible the Internet connectivity of the physical world: the Physical Internet, where not only documents and images are created, shared, or modified in the cyberspace, but also the physical resources and products interact over Internet and make decisions based on shared communication.
This book assesses the state of international manufacturing strategy and clarifies how recent developments, for example regarding configuration, technology, and the environment, are impacting on its content and direction and on its relationship to manufacturing performance. In providing up-to-date coverage of the consequences of such forces and factors for international manufacturing, this book aims to expand the debate concerning international manufacturing strategy and cast light on its current evolution. International manufacturing is operating within a time of great flux. While offshoring of activities has dominated over recent decades, nearshoring and reshoring are increasingly being considered and observed in practice. At the same time, technologies such as 3D-printing are gaining traction and the role of ICT and data analytics is increasingly important in the international manufacturing landscape while digitization becomes more prevalent and the embrace of the Internet of Things (IOT) accelerates. Furthermore, issues related to the environment are figuring more prominently in international manufacturing considerations, and assumptions regarding the long-term cost of energy are being called into question. International manufacturing is also experiencing greater servitization.
The primary aim of this volume is to provide researchers and engineers from both academia and industry with up-to-date coverage of recent advances in the fields of robotic welding, intelligent systems and automation. It gathers selected papers from the 2018 International Conference on Robotic Welding, Intelligence and Automation (RWIA 2018), held Oct 20-22, 2018 in Guangzhou, China. The contributions reveal how intelligentized welding manufacturing (IWM) is becoming an inescapable trend, just as intelligentized robotic welding is becoming a key technology. The volume is divided into four main parts: Intelligent Techniques for Robotic Welding, Sensing in Arc Welding Processing, Modeling and Intelligent Control of Welding Processing, and Intelligent Control and its Applications in Engineering.
This volume provides the reader with an integrated overview of state-of-the-art research in philosophy and ethics of design in engineering and architecture. It contains twenty-five essays that focus on engineering designing in its traditional sense, on designing in novel engineering domains, including ICT, genetics, and nanotechnology, designing of socio-technical systems, and on architectural and environmental designing. Written for Faculty, PhD and Master's students in philosophy and ethics of technology, philosophy and ethics of architecture, management of technology, management of architecture.
These are the papers presented at the Fib-RILEM workshop held in Madrid, Spain, in November 2010. The assessment of deterioration and aging of concrete structures, most commonlythrough reinforcement corrosion, is not considered incurrent structural codes or standards. Some guidelines manuals exist, and research has been done, but there is as yet no accepted methodology nor models that could be used by engineers. This book deals with all aspects related to modelling of corroding structures and provides state-of-the-art information on structural models for corroding structures."
Engineering Asset Management Review focuses on life cycle management of the physical assets required by a private or public firm for the purpose of making products and/or for providing services in a manner that satisfies various business performance rationales. In exploring the wide ranging issues involved in the management of engineered assets that constitute our built environment, this book takes a broad view of the inter- and multi-disciplinary approach which combines science, engineering, and technology principles with human behavior and business practice. The purpose of Engineering Asset Management Review is to publish research and opinions which explore strategic and tactical issues, as well as technical data and information. It also examines the issues involved in the creation (formulation and design), acquisition (procurement, installation, and commissioning), maintenance, operation, decommissioning, disposal, and/or rehabilitation of physical assets. The range of articles covers all industry sectors and physical asset types (infrastructure, plant, equipment and facilities). The aim of this volume is to provide a forum for 1. the assembly of a body of knowledge in the emerging field of engineering asset management; 2. knowledge transfer between researchers, scholars and practitioners; 3. cross-disciplinary interaction between engineers, technologists, economists, environmental practitioners, behavioral scientists, and business managers; and 4. the presentation of a wide spectrum of viewpoints and approaches from designers, developers, project managers, owners, operators, users, and vendors.
This book covers 3D printing activities by fused deposition modeling process. The two introductory chapters discuss the principle, types of machines and raw materials, process parameters, defects, design variations and simulation methods. Six chapters are devoted to experimental work related to process improvement, mechanical testing and characterization of the process, followed by three chapters on post-processing of 3D printed components and two chapters addressing sustainability concerns. Seven chapters discuss various applications including composites, external medical devices, drug delivery system, orthotic inserts, watertight components and 4D printing using FDM process. Finally, six chapters are dedicated to the study on modeling and optimization of FDM process using computational models, evolutionary algorithms, machine learning, metaheuristic approaches and optimization of layout and tool path.
Value stream design is increasingly asserting itself as "the" key approach for production optimization, but there has never been a detailed and systematic presentation of the value stream method before a gap that has now been filled by this book. The author provides an easily comprehensible code of practice for the effective analysis of production processes, product family-oriented factory structuring and the target-oriented development of an ideal future state of production. The book plausibly conveys ten design guidelines for production optimization with corresponding equations, descriptive illustrations and industrial examples well-proven in numerous industrial projects. It addresses the professional public, practitioners wishing to avoid waste and systematically improve their factories value streams, and students - tomorrow s practitioners. In contrast to other publications, this book complements the value stream analysis and its unique compact visualization of the entire production process by a detailed illustration of the information flow and a comprehensive discussion of the operator balance chart. The -traditional- concept of value stream design is significantly expanded with a view to its applicability in complex productions by way of methodological innovation and further development concerning campaign formation, value stream management and technological process integration. The method is embedded in a comprehensive procedural approach for factory planning, starting with the definition of the desired lean production goals."
This book presents the latest research on mechatronic systems engineering. By bringing together the most important papers from the 2018 Mechatronics Forum Conference 'Reinventing Mechatronics,' it outlines key trends in research and applications that will define mechatronics for the next 50 years. Mechatronics was established as an engineering discipline over 50 years ago, as the integration of electronics and information technology with mechanical design. Given major technological advances and the growth of systems-level concepts such as Cyber-Physical Systems and the Internet of Things, along with Cloud Technologies and Big Data, it's now high time to reconsider the role of mechatronics, particularly within engineering design. Past and ongoing technological changes are impacting how systems are designed and configured in ways that could never have been envisaged when the field of mechatronics was first introduced.
"Failure Rate Modeling for Reliability and Risk" focuses on reliability theory, and to the failure rate (hazard rate, force of mortality) modeling and its generalizations to systems operating in a random environment and to repairable systems. The failure rate is one of the crucial probabilistic characteristics for a number of disciplines; including reliability, survival analysis, risk analysis and demography. The book presents a systematic study of the failure rate and related indices, and covers a number of important applications where the failure rate plays the major role. Applications in engineering systems are studied, together with some actuarial, biological and demographic examples. The book provides a survey of this broad and interdisciplinary subject which will be invaluable to researchers and advanced students in reliability engineering and applied statistics, as well as to demographers, econometricians, actuaries and many other mathematically oriented researchers.
For a long time, conventional reliability analyses have been
oriented towards selecting the more reliable system and preoccupied
with maximising the reliability of engineering systems. On the
basis of counterexamples however, we demonstrate that selecting the
more reliable system does not necessarily mean selecting the system
with the smaller losses from failures! As a result, reliability
analyses should necessarily be risk-based, linked with the losses
from failures.
Reliability theory is of fundamental importance for engineers and managers involved in the manufacture of high-quality products and the design of reliable systems. In order to make sense of the theory, however, and to apply it to real systems, an understanding of the basic stochastic processes is indispensable. As well as providing readers with useful reliability studies and applications, Stochastic Processes also gives a basic treatment of such stochastic processes as: the Poisson process, the renewal process, the Markov chain, the Markov process, and the Markov renewal process. Many examples are cited from reliability models to show the reader how to apply stochastic processes. Furthermore, Stochastic Processes gives a simple introduction to other stochastic processes such as the cumulative process, the Wiener process, the Brownian motion and reliability applications. Stochastic Processes is suitable for use as a reliability textbook by advanced undergraduate and graduate students. It is also of interest to researchers, engineers and managers who study or practise reliability and maintenance.
This book provides extensive information on the key technical design disciplines, education programs, international best practices and modes of delivery that are aimed at preparing a trans-disciplinary design workforce for the future. It also presents a comprehensive overview of the scope of, and state of the art in, design education. The book highlights signature design education programs from around the globe and across all levels, in both traditional and distance learning settings. Additionally, it discusses professional societies for designers and design educators, as well as the current standards for professional registration, and program accreditation. Reflecting recent advances and emerging trends, it offers a valuable handbook for design practitioners and managers, curriculum designers and program leaders alike. It will also be of interest to students and academics looking to develop a career related to the more technical aspects of design.
This book comprises the proceedings of the conference "Future Production of Hybrid Structures 2020", which took place in Wolfsburg. The conference focused on hybrid lightweight design, which is characterized by the combination of different materials with the aim of improving properties and reducing weight. In particular, production technologies for hybrid lightweight design were discussed, new evaluation methods for the ecological assessment of hybrid components were presented and future-oriented approaches motivated by nature for the development of components, assemblies and systems were introduced. Lightweight design is a key technology for the development of sustainable and resource-efficient mobility concepts. Vehicle manufacturers operate in an area of conflict between customer requirements, competition and legislation. Material hybrid structures, which combine the advantages of different materials, have a high potential for reducing weight, while simultaneously expanding component functionality. The future, efficient use of function-integrated hybrid structures in vehicle design requires innovations and constant developments in vehicle and production technology. There is a great demand, especially with regard to new methods and technologies, for "affordable" lightweight construction in large-scale production, taking into account the increasing requirements with regard to variant diversity, safety and quality.
This book provides a detailed overview of various parameters/factors involved in inventory analysis. It especially focuses on the assessment and modeling of basic inventory parameters, namely demand, procurement cost, cycle time, ordering cost, inventory carrying cost, inventory stock, stock out level, and stock out cost. In the context of economic lot size, it provides equations related to the optimum values. It also discusses why the optimum lot size and optimum total relevant cost are considered to be key decision variables, and uses numerous examples to explain each of these inventory parameters separately. Lastly, it provides detailed information on parameter estimation for different sectors/products. Written in a simple and lucid style, it offers a valuable resource for a broad readership, especially Master of Business Administration (MBA) students.
Evolving technologies in mass production have led to the development of advanced techniques in the field of manufacturing. These technologies can quickly and effectively respond to various market changes, necessitating processes that focus on small batches of multiple products rather than large, single-product lines. Formal Methods in Manufacturing Systems: Recent Advances explores this shifting paradigm through an investigation of contemporary manufacturing techniques and formal methodologies that strive to solve a variety of issues arising from a market environment that increasingly favors flexible systems over traditional ones. This book will be of particular use to industrial engineers and students of the field who require a detailed understanding of current trends and developments in manufacturing tools. This book is part of the Advances in Civil and Industrial Engineering series collection.
This book presents the proceedings of the International Conference on Durability of Critical Infrastructure. Monitoring and Testing held in Satov, Czech Republic from 6 to 9 December 2016. It discusses the developments in the theoretical and practical aspects in the fields of Safety, Sustainability and Durability of the Critical Infrastructure. The contributions are dealing with monitoring and testing of structural and composite materials with a new methods for their using for protection and prevention of the selected objects.
This book covers some of the most popular methods in design space sampling, ensembling surrogate models, multi-fidelity surrogate model construction, surrogate model selection and validation, surrogate-based robust design optimization, and surrogate-based evolutionary optimization. Surrogate or metamodels are now frequently used in complex engineering product design to replace expensive simulations or physical experiments. They are constructed from available input parameter values and the corresponding output performance or quantities of interest (QOIs) to provide predictions based on the fitted or interpolated mathematical relationships. The book highlights a range of methods for ensembling surrogate and multi-fidelity models, which offer a good balance between surrogate modeling accuracy and building cost. A number of real-world engineering design problems, such as three-dimensional aircraft design, are also provided to illustrate the ability of surrogates for supporting complex engineering design. Lastly, illustrative examples are included throughout to help explain the approaches in a more "hands-on" manner.
This book is an attempt to provide a uni?ed methodology to derive models for fatigue life. This includes S-N, ?-N and crack propagation models. This is not a conventional book aimed at describing the fatigue fundamentals, but rather a book in which the basic models of the three main fatigue approaches, the stress-based, the strain-based and the fracture mechanics approaches, are contemplated from a novel and integrated point of view. On the other hand, as an alternative to the preferential attention paid to deterministic models based on the physical, phenomenological and empirical description of fatigue, their probabilistic nature is emphasized in this book, in which stochastic fatigue and crack growth models are presented. This book is the result of a long period of close collaborationbetween its two authors who, although of di?erent backgrounds, mathematical and mechanical, both have a strong sense of engineering with respect to the fatigue problem. When the authors of this book ?rst approached the fatigue ?eld in 1982 (twenty six years ago), they found the following scenario: 1. Linear, bilinear or trilinear models were frequently proposed by relevant laboratoriesandacademiccenterstoreproducetheW] ohler?eld. Thiswas the case of well known institutions, which justi?ed these models based on clientrequirementsorpreferences. Thisledtotheinclusionofsuchmodels and methods as, for example, the up-and-down, in standards and o?cial practical directives (ASTM, Euronorm, etc.), which have proved to be unfortunate."
This book gathers selected peer-reviewed papers presented at the 6th European Lean Educator Conference (ELEC), held in Milan, Italy, on November 11-13, 2019. The conference topics include the following: lean trainings in university and industry collaborations; lean product and process development; lean and people empowerment; emerging contexts for lean applications; measuring lean performance; lean, green and circular; continuous improvement initiatives; lean thinking in practice; organizational culture in lean journeys; and innovative training approaches to teaching lean management. The contributions explore the latest academic and industrial findings on and advances in lean education, and identify innovative methods that allow lean thinking benefits to be achieved in practice. As such, the book presents the outcomes of a fruitful exchange between academia and industry designed to help train the next generation of lean educators.
This book aims to give readers a basic understanding of commonly used additive manufacturing techniques as well as the tools to fully utilise the strengths of additive manufacturing through the modelling and design phase all the way through to post processing. Guidelines for 3D-printed biomedical implants are also provided. Current biomedical applications of 3D printing are discussed, including indirect applications in the rapid manufacture of prototype tooling and direct applications in the orthopaedics, cardiovascular, drug delivery, ear-nose-throat, and tissue engineering fields. Polymer-Based Additive Manufacturing: Biomedical Applications is an ideal resource for students, researchers, and those working in industry seeking to better understand the medical applications of additive manufacturing.
This book is about the formulations, theoretical investigations, and practical applications of new stochastic models for fundamental concepts and operations of the discipline of risk management. It also examines how these models can be useful in the descriptions, measurements, evaluations, and treatments of risks threatening various modern organizations. Moreover, the book makes clear that such stochastic models constitute very strong analytical tools which substantially facilitate strategic thinking and strategic decision making in many significant areas of risk management. In particular the incorporation of fundamental probabilistic concepts such as the sum, minimum, and maximum of a random number of continuous, positive, independent, and identically distributed random variables in the mathematical structure of stochastic models significantly supports the suitability of these models in the developments, investigations, selections, and implementations of proactive and reactive risk management operations. The book makes extensive use of integral and differential equations of characteristic functions, mainly corresponding to important classes of mixtures of probability distributions, as powerful analytical tools for investigating the behavior of new stochastic models suitable for the descriptions and implementations of fundamental risk control and risk financing operations. These risk treatment operations very often arise in a wide variety of scientific disciplines of extreme practical importance. |
![]() ![]() You may like...
Quality Analysis of Additively…
Javad Kadkhodapour, Siegfried Schmauder, …
Paperback
R4,880
Discovery Miles 48 800
Productivity with Health, Safety, and…
Lakhwinder Pal Singh, Arvind Bhardwaj, …
Hardcover
R5,501
Discovery Miles 55 010
|