![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Production engineering
One of the most critical issues facing supply chain managers in today's globalized and highly uncertain business environments is how to deal proactively with disruptions that might affect the complicated supply networks characterizing modern enterprises. Supply Chain Disruptions: Theory and Practice of Managing Risk presents a state-of the-art perspective on this particular issue. Supply Chain Disruptions: Theory and Practice of Managing Risk demonstrates that effective management of supply disruptions necessitates both strategic and tactical measures - the former involving optimal design of supply networks; the latter involving inventory, finance and demand management. It shows that managers ought to use all available levers at their disposal throughout the supply network - like sourcing and pricing strategies, providing financial subsidies, encouraging information sharing and incentive alignment between supply chain partners - in order to tackle supply disruptions. The editors combine up-to-date academic research with the latest operational risk management practices used in industry to demonstrate how theoreticians and practitioners can learn from each other. As well as providing a wealth of knowledge for students and professors who are interested in pursuing research or teaching courses in the rapidly growing area of supply chain risk management, Supply Chain Disruptions: Theory and Practice of Managing Risk also acts as a ready reference for practitioners who are interested in understanding the theoretical underpinnings of effective supply disruption management techniques.
The blurring of boundaries between hitherto distinct scientific disciplines, technologies or markets is a common and powerful phenomenon. Subjects of this convergence often change consumer behaviours, favouring products and platforms with multiple functions. The Anticipation of Converging Industries provides a detailed focus on the triggers, drivers and consequences of convergence to create a more concise definition of convergence. This detailed analysis includes a specifically developed toolbox for 'convergence foresight', creating a forecasting method for convergence trends. With the focus on the chemical, biotechnological and pharmaceutical industries, several indicators of convergence in the areas of Nutraceuticals/Functional Foods, Cosmeceuticals and ICT are derived from samples including over 1million patents and scientific publications. By supporting this methodical approach with real world data, The Anticipation of Converging Industries is perfect for industry practitioners looking for a competitive edge in the present and for the future. Similarly, academics will find a comprehensive theoretical concept for better understanding the underlying rationale of convergence at their disposal
Recent Advances in Maintenance and Infrastructure Management is a collection of papers highlighting the state of the art in maintenance of large structures and management of infrastructures. The papers selected in this book are written by international experts from academia and industry, and were presented during the past three International Conference on Maintenance Management (MM Conferences) held from 2005 to 2007 and organized by CNIM (Italian National Committee for Maintenance). The selected papers are categorized into four thematic areas: 1. reliability and maintenance; 2. mathematical modeling and metrics for maintenance; 3. maintenance management and organization, and; 4. facilities management and contracting. The papers cover topics ranging from embedded sensors for diagnostics of structures to organizational issues related to effective maintenance planning. Recent Advances in Maintenance and Infrastructure Management provides readers with a snapshot of the latest developments in the tools and techniques used to conduct maintenance of complex infrastructures and systems. The book will be of interest to researchers and practitioners in academia and industry involved in planning and deployment of maintenance operations. Additionally, this can serve as a reference text for advanced courses in operations management, and structural health monitoring.
This book presents an internationally comprehensive perspective into the field of complex systems. It explores the challenges of and approaches to complexity from a broad range of disciplines, including big data, health care, medicine, mathematics, mechanical and systems engineering, air traffic control and finance. The book's interdisciplinary character allows readers to identify transferable and mutually exclusive lessons learned among these disciplines and beyond. As such, it is well suited to the transfer of applications and methodologies between ostensibly incompatible disciplines. This book provides fresh perspectives on comparable issues of complexity from the top minds on systems thinking.
This handbook serves as a complement to the Handbook on Data Envelopment Analysis (eds, W.W. Cooper, L.M. Seiford and J, Zhu, 2011, Springer) in an effort to extend the frontier of DEA research. It provides a comprehensive source for the state-of-the art DEA modeling on internal structures and network DEA. Chapter 1 provides a survey on two-stage network performance decomposition and modeling techniques. Chapter 2 discusses the pitfalls in network DEA modeling. Chapter 3 discusses efficiency decompositions in network DEA under three types of structures, namely series, parallel and dynamic. Chapter 4 studies the determination of the network DEA frontier. In chapter 5 additive efficiency decomposition in network DEA is discussed. An approach in scale efficiency measurement in two-stage networks is presented in chapter 6. Chapter 7 further discusses the scale efficiency decomposition in two stage networks. Chapter 8 offers a bargaining game approach to modeling two-stage networks. Chapter 9 studies shared resources and efficiency decomposition in two-stage networks. Chapter 10 introduces an approach to computing the technical efficiency scores for a dynamic production network and its sub-processes. Chapter 11 presents a slacks-based network DEA. Chapter 12 discusses a DEA modeling technique for a two-stage network process where the inputs of the second stage include both the outputs from the first stage and additional inputs to the second stage. Chapter 13 presents an efficiency measurement methodology for multi-stage production systems. Chapter 14 discusses network DEA models, both static and dynamic. The discussion also explores various useful objective functions that can be applied to the models to find the optimal allocation of resources for processes within the black box, that are normally invisible to DEA. Chapter 15 provides a comprehensive review of various type network DEA modeling techniques. Chapter 16 presents shared resources models for deriving aggregate measures of bank-branch performance, with accompanying component measures that make up that aggregate value. Chapter 17 examines a set of manufacturing plants operating under a single umbrella, with the objective being to use the component or function measures to decide what might be considered as each plant's core business. Chapter 18 considers problem settings where there may be clusters or groups of DMUs that form a hierarchy. The specific case of a set off electric power plants is examined in this context. Chapter 19 models bad outputs in two-stage network DEA. Chapter 20 presents an application of network DEA to performance measurement of Major League Baseball (MLB) teams. Chapter 21 presents an application of a two-stage network DEA model for examining the performance of 30 U.S. airline companies. Chapter 22 then presents two distinct network efficiency models that are applied to engineering systems.
Cracks can develop in rotating shafts and can propagate to relevant depths without affecting consistently the normal operating conditions of the shaft. In order to avoid catastrophic failures, accurate vibration analyses have to be performed for crack detection. The identification of the crack location and depth is possible by means of a model based diagnostic approach, provided that the model of the crack and the model of the cracked shaft dynamical behavior are accurate and reliable. This monograph shows the typical dynamical behavior of cracked shafts and presents tests for detecting cracks. The book describes how to model cracks, how to simulate the dynamical behavior of cracked shaft, and compares the corresponding numerical with experimental results. All effects of cracks on the vibrations of rotating shafts are analyzed, and some results of a numerical sensitivity analysis of the vibrations to the presence and severity of the crack are shown. Finally the book describes some crack identification procedures and shows some results in model based crack identification in position and depth. The book is useful for higher university courses in mechanical and energetic engineering, but also for skilled technical people employed in power generation industries.
Hydroforming uses a pressurised fluid to form component shapes. The
process allows the manufacture of lighter, more complex shapes with
increased strength at lower cost compared to more traditional
techniques such as stamping, forging, casting or welding. As a
result hydroformed components are increasingly being used in the
aerospace, automotive and other industries. This authoritative book
reviews the principles, applications and optimisation of this
important process.
This monograph and translation from the Russian describes in detail and comments on the fundamentals of metrology. The basic concepts of metrology, the principles of the International System of Units SI, the theory of measurement uncertainty, the new methodology of estimation of measurement accuracy on the basis of the uncertainty concept, as well as the methods for processing measurement results and estimating their uncertainty are discussed from the modern position. It is shown that the uncertainty concept is compatible with the classical theory of accuracy. The theory of random uncertainties is supplemented with their most general description on the basis of generalized normal distribution; the instrumental systematic errors are presented in connection with the methodology of normalization of the metrological characteristics of measuring instruments. The information about modern systems of traceability is given. All discussed theoretical principles and calculation methods are illustrated with examples.
Modeling and Control of Batch Processes presents state-of-the-art techniques ranging from mechanistic to data-driven models. These methods are specifically tailored to handle issues pertinent to batch processes, such as nonlinear dynamics and lack of online quality measurements. In particular, the book proposes: a novel batch control design with well characterized feasibility properties; a modeling approach that unites multi-model and partial least squares techniques; a generalization of the subspace identification approach for batch processes; and applications to several detailed case studies, ranging from a complex simulation test bed to industrial data. The book's proposed methodology employs statistical tools, such as partial least squares and subspace identification, and couples them with notions from state-space-based models to provide solutions to the quality control problem for batch processes. Practical implementation issues are discussed to help readers understand the application of the methods in greater depth. The book includes numerous comments and remarks providing insight and fundamental understanding into the modeling and control of batch processes. Modeling and Control of Batch Processes includes many detailed examples of industrial relevance that can be tailored by process control engineers or researchers to a specific application. The book is also of interest to graduate students studying control systems, as it contains new research topics and references to significant recent work. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This book presents intuitive explanations of the principles and applications of power system resiliency, as well as a number of straightforward and practical methods for the impact analysis of risk events on power system operations. It also describes the challenges of modelling, distribution networks, optimal scheduling, multi-stage planning, deliberate attacks, cyber-physical systems and SCADA-based smart grids, and how to overcome these challenges. Further, it highlights the resiliency issues using various methods, including strengthening the system against high impact events with low frequency and the fast recovery of the system properties. A large number of specialists have collaborated to provide innovative solutions and research in power systems resiliency. They discuss the fundamentals and contemporary materials of power systems resiliency, theoretical and practical issues, as well as current issues and methods for controlling the risk attacks and other threats to AC power systems. The book includes theoretical research, significant results, case studies, and practical implementation processes to offer insights into electric power and engineering and energy systems. Showing how systems should respond in case of malicious attacks, and helping readers to decide on the best approaches, this book is essential reading for electrical engineers, researchers and specialists. The book is also useful as a reference for undergraduate and graduate students studying the resiliency and reliability of power systems.
This book reports on an outstanding research devoted to modeling and control of dynamic systems using fractional-order calculus. It describes the development of model-based control design methods for systems described by fractional dynamic models. More than 300 years had passed since Newton and Leibniz developed a set of mathematical tools we now know as calculus. Ever since then the idea of non-integer derivatives and integrals, universally referred to as fractional calculus, has been of interest to many researchers. However, due to various issues, the usage of fractional-order models in real-life applications was limited. Advances in modern computer science made it possible to apply efficient numerical methods to the computation of fractional derivatives and integrals. This book describes novel methods developed by the author for fractional modeling and control, together with their successful application in real-world process control scenarios.
Human and organizational factors have a substantial impact on the performance of planning and scheduling processes. Despite widespread and advanced decision support systems, human decision makers are still crucial to improve the operational performance in manufacturing industries. In this text, the state of the art in this area is discussed by experts from a wide variety of engineering and social science disciplines. Moreover, recent results from collaborative studies and a number of field cases are presented. The text is targeted at researchers and graduate students, but is also particularly useful for managers, consultants, and system developers to better understand how human performance can be advanced.
Understanding the fatigue behaviour of structural components under variable load amplitude is an essential prerequisite for safe and reliable light-weight design. For designing and dimensioning, the expected stress (load) is compared with the capacity to withstand loads (fatigue strength). In this process, the safety necessary for each particular application must be ensured. A prerequisite for ensuring the required fatigue strength is a reliable load assumption. The authors describe the transformation of the stress- and load-time functions which have been measured under operational conditions to spectra or matrices with the application of counting methods. The aspects which must be considered for ensuring a reliable load assumption for designing and dimensioning are discussed in detail. Furthermore, the theoretical background for estimating the fatigue life of structural components is explained, and the procedures are discussed for numerous applications in practice. One of the prime intentions of the authors is to provide recommendations which can be implemented in practical applications.
A formal method is not the main engine of a development process, its contribution is to improve system dependability by motivating formalisation where useful. This book summarizes the results of the DEPLOY research project on engineering methods for dependable systems through the industrial deployment of formal methods in software development. The applications considered were in automotive, aerospace, railway, and enterprise information systems, and microprocessor design. The project introduced a formal method, Event-B, into several industrial organisations and built on the lessons learned to provide an ecosystem of better tools, documentation and support to help others to select and introduce rigorous systems engineering methods. The contributing authors report on these projects and the lessons learned. For the academic and research partners and the tool vendors, the project identified improvements required in the methods and supporting tools, while the industrial partners learned about the value of formal methods in general. A particular feature of the book is the frank assessment of the managerial and organisational challenges, the weaknesses in some current methods and supporting tools, and the ways in which they can be successfully overcome. The book will be of value to academic researchers, systems and software engineers developing critical systems, industrial managers, policymakers, and regulators.
This book covers the elements involved in achieving sustainability in textiles and clothing sector. The chapters covered in three volumes of this series title cover all the distinctive areas earmarked for achieving sustainable development in textiles and clothing industry. This third volume highlights the areas pertaining to the regulatory aspects and sustainability standards applicable to textiles and clothing supply chain. There are various standards earmarked for measuring the environmental impacts and sustainability of textile products. There are also plenty of certification schemes available along with the index systems applicable to textile sector. Brands and manufactures are also venturing into new developments to achieve sustainable development in textile sector. This third volume addresses all these important aspects.
The book shows how simulation's long history and close ties to industry since the third industrial revolution have led to its growing importance in Industry 4.0. The book emphasises the role of simulation in the new industrial revolution, and its application as a key aspect of making Industry 4.0 a reality - and thus achieving the complete digitisation of manufacturing and business. It presents various perspectives on simulation and demonstrates its applications, from augmented or virtual reality to process engineering, and from quantum computing to intelligent management. Simulation for Industry 4.0 is a guide and milestone for the simulation community, as well as those readers working to achieve the goals of Industry 4.0. The connections between simulation and Industry 4.0 drawn here will be of interest not only to beginners, but also to practitioners and researchers as a point of departure in the subject, and as a guide for new lines of study.
Billions of dollars are being spent annually world-wide to develop reliable and good quality products and services. Global competition and other factors are forcing manufacturers and others to produce highly reliable and good quality products and services. This means that reliability and quality principles are now being applied across many diverse sectors of economy and each of these sectors (robotics, health care, power generation, the Internet, textile, food and software) has tailored reliability and quality principles, methods, and procedures to satisfy its specific need. Reliability and quality professionals working in these areas need to know about each other's work activities because this may help them - directly or indirectly - to perform their tasks more effectively. Applied Reliability and Quality: Fundamentals, Methods and Procedures meets the need for a single volume that considers applied areas of both reliability and quality. Before now, there has not been one book that covers both applied reliability and quality; so to gain knowledge of each other's specialties, these people had to study various books, articles, or reports on each area. As the first book of its kind, Applied Reliability and Quality: Fundamentals, Methods and Procedures will be useful to design engineers, manufacturing engineers, system engineers, engineering and manufacturing managers, reliability specialists, quality specialists, graduate and senior undergraduate students of engineering, researchers and instructors of reliability and quality, and professionals in areas such as health care, software, power generation, robotics, textile, food, and the Internet.
This book introduces readers to titanium matrix composites (TMCs) with novel network microstructures. The bottleneck problem of extreme brittleness and low strengthening effect surrounding TMCs fabricated by means of powder metallurgy has recently been solved by designing network microstructures, which yield both high strength and superior ductility. As such, network structured TMCs will increasingly offer materials characterized by low weight, high strength, high temperature resistance and superior deformability. The book systematically addresses the design, fabrication, microstructure, properties, modification, and toughening mechanisms of these composites, which will help us find innovative solutions to a range of current and future engineering problems.
This book assesses the state of international manufacturing strategy and clarifies how recent developments, for example regarding configuration, technology, and the environment, are impacting on its content and direction and on its relationship to manufacturing performance. In providing up-to-date coverage of the consequences of such forces and factors for international manufacturing, this book aims to expand the debate concerning international manufacturing strategy and cast light on its current evolution. International manufacturing is operating within a time of great flux. While offshoring of activities has dominated over recent decades, nearshoring and reshoring are increasingly being considered and observed in practice. At the same time, technologies such as 3D-printing are gaining traction and the role of ICT and data analytics is increasingly important in the international manufacturing landscape while digitization becomes more prevalent and the embrace of the Internet of Things (IOT) accelerates. Furthermore, issues related to the environment are figuring more prominently in international manufacturing considerations, and assumptions regarding the long-term cost of energy are being called into question. International manufacturing is also experiencing greater servitization.
This book presents a domain of extreme industrial and scientific interest: the study of smart systems and structures. It presents polytope projects as comprehensive physical and cognitive architectures that support the investigation, fabrication and implementation of smart systems and structures. These systems feature multifunctional components that can perform sensing, control, and actuation. In light of the fact that devices, tools, methodologies and organizations based on electronics and information technology for automation, specific to the third industrial revolution, are increasingly reaching their limits, it is essential that smart systems be implemented in industry. Polytope projects facilitate the utilization of smart systems and structures as key elements of the fourth industrial revolution. The book begins by presenting polytope projects as a reference architecture for cyber-physical systems and smart systems, before addressing industrial process synthesis in Chapter 2. Flow-sheet trees, cyclic separations and smart configurations for multi-component separations are discussed here. In turn, Chapter 3 highlights periodic features for drug delivery systems and networks of chemical reactions, while Chapter 4 applies conditioned random walks to polymers and smart materials structures. Chapter 5 examines self-assembly and self-reconfiguration at different scales from molecular to micro systems. Smart devices and technologies are the focus of chapter 6. Modular micro reactor systems and timed automata are examined in selected case studies. Chapter 7 focuses on inferential engineering designs, concept-knowledge, relational concept analysis and model driven architecture, while Chapter 8 puts the spotlight on smart manufacturing, industry 4.0, reference architectures and models for new product development and testing. Lastly, Chapter 9 highlights the polytope projects methodology and the prospects for smart systems and structures. Focusing on process engineering and mathematical modeling for the fourth industrial revolution, the book offers a unique resource for engineers, scientists and entrepreneurs working in chemical, biochemical, pharmaceutical, materials science or systems chemistry, students in various domains of production and engineering, and applied mathematicians.
This volume presents measurement uncertainty and uncertainty budgets in a form accessible to practicing engineers and engineering students from across a wide range of disciplines. The book gives a detailed explanation of the methods presented by NIST in the "GUM" - Guide to Uncertainty of Measurement. Emphasis is placed on explaining the background and meaning of the topics, while keeping the level of mathematics at the minimum level necessary. Dr. Colin Ratcliffe, USNA, and Bridget Ratcliffe, Johns Hopkins, develop uncertainty budgets and explain their use. In some examples, the budget may show a process is already adequate and where costs can be saved. In other examples, the budget may show the process is inadequate and needs improvement. The book demonstrates how uncertainty budgets help identify the most cost effective place to make changes. In addition, an extensive fully-worked case study leads readers through all issues related to an uncertainty analysis, including a variety of different types of uncertainty budgets. The book is ideal for professional engineers and students concerned with a broad range of measurement assurance challenges in applied sciences. This book also: Facilitates practicing engineers' understanding of uncertainty budgets, essential to calculating cost-effective savings to a wide variety of processes contingent on measurement Presents uncertainty budgets in an accessible style suitable for all undergraduate STEM courses that include a laboratory component Provides a highly adaptable supplement to graduate textbooks for courses where students' work includes reporting on experimental results Includes an expanded case study developing uncertainty from transducers though measurands and propagated to the final measurement that can be used as a template for the analysis of many processes Stands as a useful pocket reference for all engineers and experimental scientists
This book presents the proceedings of the 4th International Conference on Integrated Petroleum Engineering and Geosciences 2016 (ICIPEG 2016), held under the banner of World Engineering, Science & Technology Congress (ESTCON 2016) at Kuala Lumpur Convention Centre from August 15 to 17, 2016. It presents peer-reviewed research articles on exploration, while also exploring a new area: shale research. In this time of low oil prices, it highlights findings to maintain the exchange of knowledge between researchers, serving as a vital bridge-builder between engineers, geoscientists, academics, and industry.
Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented.Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN modelstems from fuzzy cognitive maps and uses the notion of concepts and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems.All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: contemporary power generation; process control and conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results."
This book presents essential methods and tools for research into the reliability of energy systems. It describes in detail the content setting, formalisation, and use of algorithms for assessing the reliability of modern, large, and complex electric power systems. The book uses a wealth of tables and illustrations to represent results and source information in a clear manner. It discusses the main operating conditions which affect the reliability of electric power systems, and describes corresponding computing tools which can help solve issues as they arise. Further, all methodologies presented here are demonstrated in numerical examples. Though primarily intended for researchers and practitioners in the field of electric power systems, the book will also benefit general readers interested in this area. |
You may like...
24th European Symposium on Computer…
Jiri J. Klemes, Petar Sabev Varbanov, …
Hardcover
R10,032
Discovery Miles 100 320
Manufacturing, Modelling, Management and…
George Chryssolouris, D. Mourtzis
Paperback
R2,034
Discovery Miles 20 340
|