![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Production engineering
Applying TQM to systems engineering can reduce costs while simultaneously improving product quality. This guide to proactive systems engineering shows how to develop and optimize a practical approach, while highlighting the pitfalls and potentials involved.
This book on constrained optimization is novel in that it fuses these themes: * use examples to introduce general ideas; * engage the student in spreadsheet computation; * survey the uses of constrained optimization;. * investigate game theory and nonlinear optimization, * link the subject to economic reasoning, and * present the requisite mathematics. Blending these themes makes constrained optimization more accessible and more valuable. It stimulates the student's interest, quickens the learning process, reveals connections to several academic and professional fields, and deepens the student's grasp of the relevant mathematics. The book is designed for use in courses that focus on the applications of constrained optimization, in courses that emphasize the theory, and in courses that link the subject to economics.
This book covers all sustainable fibres applicable in the fashion sector. It addresses the importance of these fibres in the fashion sector with the context of sustainability. This book, the first of its kind, addresses all the minute details pertaining to these fibres and connects these fibres with the world of sustainable fashion. It stresses the importance of having these fibres on board in developing sustainable apparels, as fibres play a major role as the starting point in the life cycle of apparel.
This book presents intellectual, innovative, information
technologies (I3-technologies) based on logical and probabilistic
(LP) risk models. The technologies presented here consider such
models for structurally complex systems and processes with logical
links and with random events in economics and technology. A number of applications is given to show the effectiveness of risk management technologies. In addition, topics of lectures and practical computer exercises intended for a two-semester course Risk management technologies are suggested."
This book presents modeling methods and algorithms for data-driven prediction and forecasting of practical industrial process by employing machine learning and statistics methodologies. Related case studies, especially on energy systems in the steel industry are also addressed and analyzed. The case studies in this volume are entirely rooted in both classical data-driven prediction problems and industrial practice requirements. Detailed figures and tables demonstrate the effectiveness and generalization of the methods addressed, and the classifications of the addressed prediction problems come from practical industrial demands, rather than from academic categories. As such, readers will learn the corresponding approaches for resolving their industrial technical problems. Although the contents of this book and its case studies come from the steel industry, these techniques can be also used for other process industries. This book appeals to students, researchers, and professionals within the machine learning and data analysis and mining communities.
This book describes principles, industry practices and evolutionary methodologies for advanced safety studies, which are helpful in effectively managing volatile, uncertain, complex, and ambiguous (VUCA) environments within the framework of quantitative risk assessment and management and associated with the safety and resilience of structures and infrastructures with tolerance against various types of extreme conditions and accidents such as fires, explosions, collisions and grounding. It presents advanced computational models for characterizing structural actions and their effects in extreme and accidental conditions, which are highly nonlinear and non-Gaussian in association with multiple physical processes, multiple scales, and multiple criteria. Probabilistic scenario selection practices and applications are presented. Engineering practices for structural crashworthiness analysis in extreme conditions and accidents are described. Multidisciplinary approaches involving advanced computational models and large-scale physical model testing are emphasized. The book will be useful to students at a post-graduate level as well as researchers and practicing engineers.
Followed by the previous part (Volume-1), Volume-2 of carbon footprint assessment book deals with the assessment of carbon footprint in different other sectors, which were not dealt in the first part. Attention on Carbon footprint is growing day-by-day from the public, government and media. Certainly it is one of the most important topics in the agenda of every nation, which is trying its best to reduce its carbon footprint to the maximum possible extent. Every manufacturing industry or sector would like to reduce the carbon footprint of its products and consumers are looking for the products which emit lower carbon emissions in their entire life cycle. Assessment of Carbon footprint for different products, processes and services and also carbon labeling of products have become familiar topics in the recent past in various industrial sectors. Every industry has its unique assessment and modeling techniques, allocation procedures, mitigation methods and labeling strategies for its carbon emissions. With this background, volume two of this book has been framed with dedicated chapters on carbon footprint assessment on various industrial sectors, apart from the ones covered in Volume 1. In each chapter, details pertaining to the assessment methodologies of carbon footprint followed in a particular industry, challenges in calculating the carbon footprint, case studies of various products in that particular industry, mitigation measures to be followed to trim down the carbon footprint, recommendations for further research are discussed in detail.
This book investigates the impact of production input factors on the market, consumer and producer energy demand characteristics in 30 industrial sectors for South Korea over the period 1980-2009, and for Japan over the period 1973-2006, with special emphasis placed on the effects of ICT investment on the demand for energy. A dynamic factor demand model is developed, accounting for the adjustment costs that are defined in terms of forgone output from current production. It addresses four key aspects of production and energy demand in manufacturing: first, it establishes the various relationships between different factors of production. Second, it investigates whether the energy demand in the industrial sectors in South Korea would be decreased or increased by substituting/complementing with other input factors such as ICT capital and labor. Third, it looks at sources of growth in the industrial sectors through decomposing the Divisia index based total factor productivity (TFP). Finally it provides appropriate policy recommendations based on these findings. The results of this study may provide industrial sectors' stakeholders and environmental and industrial policy makers with a flexible model that has the capacity to assess outcomes of various policies under certain scenarios. The factor demand methodology described in this book is very advanced and up-to-date. It can be used when teaching advanced graduate courses and in empirically advanced research. Therefore, it is highly relevant in both teaching as a main or supplementary text and in particular as a reference handbook in conducting empirical research. The focus on ICT effects on energy use makes this book an important addition to the existing literature on industrial development.
Heavily integrates Microsoft Project into the chaptersOffers templates and examplesIncludes case studiesProvides lab assignments for hands-on-experiencePresents topics covered in the PMBOK that will prepare students for the Project Management Institute certification exams.
Manufacturing Technology, Volume 1 provides a comprehensive introduction to the principles and practice of engineering manufacturing processes. This third edition has been written, updated and expanded to reflect the current requirements of the Advanced GNVQ Engineering syllabus as well as BTEC NC/D engineering specifications. As such it also forms an ideal introduction to the subject for first-year degree courses in engineering. Topics covered include: alteration of shape, tooling, toolholding and workholding, kinematics of manufacturing equipment, computer numerical control (CNC), assembly, fabrication (including plastics), heat treatment, finishing, quality control, manufacturing relationships, and health and safety at work. This book leads the reader naturally onto the companion volume Manufacturing Technology, Volume 2, intended for those studying engineering manufacture at a more advanced level such as HNC/D and first/second-year engineering degree courses. The broad and in-depth coverage of this two-volume approach ensures that these texts not only satisfy the requirements of technician students up to the highest level but also provide an excellent technical background for undergraduates studying for a degree in mechanical engineering, manufacturing engineering and combined engineering.
The book presents the development of the Construction Quality Assessment System (CONQUAS), Singapore's de facto quality performance measurement system, explains the application of the Quality Management System (QMS) to manage CONQUAS and identifies 33 critical success factors (CSFs) for achieving high CONQUAS scores. Through CONQUAS, the reader benefits from understanding how the Singapore government developed and implemented the first objective system for measuring what many building professionals have perceived to be elusive quality standards in the construction industry. The book presents both the theoretical concepts as well as the practical aspects to achieving strategic Project Quality Management that is anchored on the CSFs to building best practices. To realistically reflect the practical aspects and challenging issues faced by stakeholders in the construction industry, questionnaire surveys were conducted with building professionals to distinguish the importance level and extent of adoption of the 33 CSFs (identified from a comprehensive review of the extant literature) in influencing and affecting the achievement of high CONQUAS scores. These were further anchored by in-depth interviews with quality experts in the Singapore construction industry to provide a better understanding of issues relating to strategic Project Quality Management. Collectively, the empirical findings collated from the building professionals suggest that while the CSFs identified are known tenets of quality, these were still not being followed in their totality. A further case study was conducted through a formal set of in-depth interviews with the quality assurance team of a construction company who has direct involvement before, during and after their tremendous improvements in the CONQUAS scores attained. The strength of this book therefore represents a true account and reflections of real-life practices and experiences in the construction industry for contractors, quality managers and policy-makers to learn from. Although the context of this book relates to the Singapore experience, the lessons and recommendations are equally relevant and applicable to the global construction industry in both the developing and developed countries whose stakeholders (in both the public and private sectors) wish to understand how CONQUAS works, and how the CSFs identified can likewise be implemented for strategic Project Quality Management to building best practices. The book is therefore of interests to researchers, academia and practitioners in the construction industry as well as in other sectors of the economy (in Singapore and other countries) where learning points may be used for enhancing project quality management for buildings.
The 1980's information explosion on new-product development demands a broad-scope, up-to-date review of literature. Calantone and di Benedetto take on the task in this comprehensive annotated bibliography, citing more than 450 articles and books on product innovation and new product development. They have produced a thoroughly integrative review of marketing, business, and engineering literatures, identifying general managerial conclusions. Outlining key issues and problems faced by product managers, Calantone and di Benedetto determine to what extent these issues have been addressed in academic literature. How much of reported research is relevant? What is the quality of available scientific knowledge? Can business managers and marketing staffs learn from other functional areas, i.e. engineering or technical journals? This bibliography is a valuable entry into innovation literature for both product managers and academic researchers. Calantone and di Benedetto's review is structured according to topic area: factors influencing product and process innovation; stages in new-product development; product diffusion forecasting; the R & D-marketing interface; organizational structure; and technology transfer. Each chapter includes a literature review and an extensive annotated bibliography. A representative set of articles from major marketing, business management, operations research, and engineering publications are selected. As a rule of thumb, articles from 1978 to the present are included. Several major works from earlier years are also cited. The authors complete this volume with their own observations and conclusions, an author index, and a subject index.
Power quality describes a set of parameters of electric power
and the load's ability to function properly under specific
conditions. It is estimated that problems relating to power quality
costs the European industry hundreds of billions of Euros annually.
In contrast, financing for the prevention of these problems amount
to fragments of these costs. Power Theories for Improved Power
Quality addresses this imbalance by presenting and assessing a
range of methods and problems related to improving the quality of
electric power supply.
The development of new-generation micro-manufacturing technologies and systems has revolutionised the way products are designed and manufactured today with a s- nificant impact in a number of key industrial sectors. Micro-manufacturing techno- gies are often described as disruptive, enabling and interdisciplinary leading to the creation of whole new classes of products that were previously not feasible to ma- facture. While key processes for volume manufacture of micro-parts such as mach- ing and moulding are becoming mature technologies, micro-assembly remains a key challenge for the cost-effective manufacture of complex micro-products. The ability to manufacture customizable micro-products that can be delivered in variable volumes within relatively short timescales is very much dependent on the level of development of the micro-assembly processes, positioning, alignment and measurement techniques, gripping and feeding approaches and devices. Micro-assembly has developed rapidly over the last few years and all the pred- tions are that it will remain a critical technology for high-value products in a number of key sectors such as healthcare, communications, defence and aerospace. The key challenge is to match the significant technological developments with a new gene- tion of micro-products that will establish firmly micro-assembly as a mature manuf- turing process. th The book includes the set of papers presented at the 5 International Precision - sembly Seminar IPAS 2010 held in Chamonix, France from the 14th to the 17th February 2010.
This book integrates multiple criteria concepts and methods for problems within the Risk, Reliability and Maintenance (RRM) context. The concepts and foundations related to RRM are considered for this integration with multicriteria approaches. In the book, a general framework for building decision models is presented and this is illustrated in various chapters by discussing many different decision models related to the RRM context. The scope of the book is related to ways of how to integrate Applied Probability and Decision Making. In Applied Probability, this mainly includes: decision analysis and reliability theory, amongst other topics closely related to risk analysis and maintenance. In Decision Making, it includes a broad range of topics in MCDM (Multi-Criteria Decision Making) and MCDA (Multi-Criteria Decision Aiding; also known as Multi-Criteria Decision Analysis). In addition to decision analysis, some of the topics related to Mathematical Programming area are briefly considered, such as multiobjective optimization, since methods related to these topics have been applied to the context of RRM. The book addresses an innovative treatment for the decision making in RRM, thereby improving the integration of fundamental concepts from the areas of both RRM and decision making. This is accomplished by presenting an overview of the literature on decision making in RRM. Some pitfalls of decision models when applying them to RRM in practice are discussed and guidance on overcoming these drawbacks is offered. The procedure enables multicriteria models to be built for the RRM context, including guidance on choosing an appropriate multicriteria method for a particular problem faced in the RRM context. The book also includes many research advances in these topics. Most of the multicriteria decision models that are described are specific applications that have been influenced by this research and the advances in this field. Multicriteria and Multiobjective Models for Risk, Reliability and Maintenance Decision Analysis is implicitly structured in three parts, with 12 chapters. The first part deals with MCDM/A concepts methods and decision processes. The second part presents the main concepts and foundations of RRM. Finally the third part deals with specific decision problems in the RRM context approached with MCDM/A models.
Modern manufacturing requires information systems that integrate process design and costing data, allowing rapid assessment of 'what if' scenarios. This book details the development of such systems with a focus on the data schema and user interface design.
This book presents extensive information on structural health monitoring for suspension bridges. During the past two decades, there have been significant advances in the sensing technologies employed in long-span bridge health monitoring. However, interpretation of the massive monitoring data is still lagging behind. This book establishes a series of measurement interpretation frameworks that focus on bridge site environmental conditions, and global and local responses of suspension bridges. Using the proposed frameworks, it subsequently offers new insights into the structural behaviors of long-span suspension bridges. As a valuable resource for researchers, scientists and engineers in the field of bridge structural health monitoring, it provides essential information, methods, and practical algorithms that can facilitate in-service bridge performance assessments.
The book provides readers with a snapshot of recent research and industrial trends in field of industrial acoustics and vibration. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at International Conference on Acoustics and Vibration (ICAV2016), which was organized by the Tunisian Association of Industrial Acoustics and Vibration (ATAVI) and held March 21-23, in Hammamet, Tunisia. The contributions, mainly written by north African authors, covers advances in both theory and practice in a variety of subfields, such as: smart materials and structures; fluid-structure interaction; structural acoustics as well as computational vibro-acoustics and numerical methods. Further topics include: engines control, noise identification, robust design, flow-induced vibration and many others.This book provides a valuable resource for both academics and professionals dealing with diverse issues in applied mechanics. By combining advanced theories with industrial issues, it is expected to facilitate communication and collaboration between different groups of researchers and technology users.
Control engineering seeks to understand physical systems, using mathematical modeling, in terms of inputs, outputs and various components with different behaviors. It has an essential role in a wide range of control systems, from household appliances to space flight. This book provides an in-depth view of the technologies that are implemented in most varieties of modern industrial control engineering. A solid grounding is provided in traditional control techniques, followed by detailed examination of modern control techniques such as real-time, distributed, robotic, embedded, computer and wireless control technologies. For each technology, the book discusses its full profile, from the field layer and the control layer to the operator layer. It also includes all the interfaces in industrial control systems: between controllers and systems; between different layers; and between operators and systems. It not only describes the details of both real-time operating systems and distributed operating systems, but also provides coverage of the microprocessor boot code, which other books lack. In addition to working principles and operation mechanisms, this
book emphasizes the practical issues of components, devices and
hardware circuits, giving the specification parameters, install
procedures, calibration and configuration methodologies needed for
engineers to put the theory into practice.
This book presents the proceedings of the 3rd International Conference on Integrated Petroleum Engineering and Geosciences 2014 (ICIPEG2014). Topics covered on the petroleum engineering side include reservoir modeling and simulation, enhanced oil recovery, unconventional oil and gas reservoirs, production and operation. Similarly geoscience presentations cover diverse areas in geology, geophysics palaeontology and geochemistry. The selected papers focus on current interests in petroleum engineering and geoscience. This book will be a bridge between engineers, geoscientists, academicians and industry.
This book highlights the current challenges for engineers involved in product development and the associated changes in procedure they make necessary. Methods for systematically analyzing the requirements for safety and security mechanisms are described using examples of how they are implemented in software and hardware, and how their effectiveness can be demonstrated in terms of functional and design safety are discussed. Given today's new E-mobility and automated driving approaches, new challenges are arising and further issues concerning "Road Vehicle Safety" and "Road Traffic Safety" have to be resolved. To address the growing complexity of vehicle functions, as well as the increasing need to accommodate interdisciplinary project teams, previous development approaches now have to be reconsidered, and system engineering approaches and proven management systems need to be supplemented or wholly redefined. The book presents a continuous system development process, starting with the basic requirements of quality management and continuing until the release of a vehicle and its components for road use. Attention is paid to the necessary definition of the respective development item, the threat-, hazard- and risk analysis, safety concepts and their relation to architecture development, while the book also addresses the aspects of product realization in mechanics, electronics and software as well as for subsequent testing, verification, integration and validation phases. In November 2011, requirements for the Functional Safety (FuSa) of road vehicles were first published in ISO 26262. The processes and methods described here are intended to show developers how vehicle systems can be implemented according to ISO 26262, so that their compliance with the relevant standards can be demonstrated as part of a safety case, including audits, reviews and assessments.
Electrical power systems are, in general, amongst the most reliable systems worldwide. These large interconnected systems, however, often operate under stressed conditions because of the increasing demand for electricity and the challenges associated with improving the infrastructure due to both economical and environmental issues. Some of the major challenges facing the electricity industry today include balancing between resource adequacy, reliability, economics, environmental and other public purpose objectives to optimize transmission and distribution resources to meet the growing demand. The capability of a power system depends on network constraints, generated power, line currents, nodal voltage amplitudes, and stability margins. If modern or enhanced facilities are not affordable, a renewed effort in assessing and rationalizing the exploitation of the system capability is highly recommended. Solutions to these complex issues are offered through the integration of modern information and communication technologies with reliable methodologies for power systems analysis. The goal of this book is to provide a vision for a comprehensive and systematic approach to meet the grid management challenges through new information services.
The importance of power system reliability is demonstrated when our electricity supply is disrupted, whether it decreases the comfort of our free time at home or causes the shutdown of our companies and results in huge economic deficits. The objective of Assessment of Power System Reliability is to contribute to the improvement of power system reliability. It consists of six parts divided into twenty chapters. The first part introduces the important background issues that affect power system reliability. The second part presents the reliability methods that are used for analyses of technical systems and processes. The third part discusses power flow analysis methods, because the dynamic aspect of a power system is an important part of related reliability assessments. The fourth part explores various aspects of the reliability assessment of power systems and their parts. The fifth part covers optimization methods. The sixth part looks at the application of reliability and optimization methods. Assessment of Power System Reliability has been written in straightforward language that continues into the mathematical representation of the methods. Power engineers and developers will appreciate the emphasis on practical usage, while researchers and advanced students will benefit from the simple examples that can facilitate their understanding of the theory behind power system reliability and that outline the procedure for application of the presented methods.
"Tokamak Engineering Mechanics" offers concise and thorough
coverage of engineering mechanics theory and application for
tokamaks, and the material is reinforced by numerous examples.
Chapter topics include general principles, static mechanics,
dynamic mechanics, thermal fluid mechanics and multiphysics
structural mechanics of tokamak structure analysis. The theoretical
principle of the design and the methods of the analysis for various
components and load conditions are presented, while the latest
engineering technologies are also introduced. The book will provide
readers involved in the study of mechanical/fusion engineering with
a general understanding of tokamak engineering mechanics.
|
You may like...
|