![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Production engineering
Most successful organizations recognize Maintenance Parts and Procurement as a critical success factor to Asset Management Excellence and their fundamental supply chain value proposition. This book works as a guide to all the stakeholders that influence the success of their Maintenance Parts Operation and their enterprise's bottom line. Maintenance Parts Management Excellence: A Holistic Anatomy defines the Maintenance Parts Managements role in Asset Management Excellence and expands on the importance of the Parts Inventory Planner role in an organization. It discusses how to create a unique Maintenance Parts Management Strategy for an organization and offers insights on the multiple strategies needed to create and maintain a Maintenance Parts inventory policy. The book also provides an organized overall approach to creating Maintenance Parts Management Excellence in an enterprise. Executives with an organization responsible for the construction, management, and disposal of all assets classes (plant, equipment, IT assets), consultants responsible for assignments associated with optimizing life cycle decisions for clients, maintenance, and reliability professionals within an organization, will benefit from this professional plus book. Upper-level undergraduate engineering students, as well as graduate students of management who focus on operations management and engineering graduate students addressing issues of maintenance and reliability engineering, may also be interested in this book.
The 1980s have witnessed a tremendous growth in the field of computer integrated manufacturing systems. The other major areas of development have been computer-aided design, computer-aided manufacturing, industrial robotics, automated assembly, cellular and modular material handling, computer networking and office automation to name just a few. These new technologies are generally capital intensive and do not conform to traditional cost structures. The net result is a tremendous change in the way costs should be estimated and economic analyses performed. The majority of existing engineering economy texts still profess application of traditional analysis methods. But, as was men tioned above, it is clear that the basic trend in manufacturing industries is itself changing. So it is quite obvious that the practice of traditional economic analysis methods should change too. This book is an attempt to address the various issues associated with non-traditional methods for evaluation of advanced computer-integrated technologies. This volume consists of twenty refereed articles which are grouped into five parts. Part one, Economic Justification Methods, consists of six articles. In the first paper, Soni et at. present a new classification for economic justification methods for advanced automated manufacturing systems. In the second, Henghold and LeClair look at strengths and weaknesses of expert systems in general and more specifically, an ap plication aimed at investment justification in advanced technology. The third paper, by Carrasco and Lee, proposes an enhanced economic methodology to improve the needs analysis, conceptual design and de tailed design activities associated with technology modernization."
Current issues and approaches in the reliability and safety analysis of dynamic process systems are the subject of this book. The authors of the chapters are experts from nuclear, chemical, mechanical, aerospace and defense system industries, and from institutions including universities, national laboratories, private consulting companies, and regulatory bodies. Both the conventional approaches and dynamic methodologies which explicitly account for the time element in system evolution in failure modeling are represented. The papers on conventional approaches concentrate on the modeling of dynamic effects and the need for improved methods. The dynamic methodologies covered include the DYLAM methodology, the theory of continuous event trees, several Markov model construction procedures, Monte Carlo simulation, and utilization of logic flowgraphs in conjunction with Petri nets. Special emphasis is placed on human factors such as procedures and training.
The proceedings contain lectures and short papers presented at the NATO Advanced Study Institute on "Reliability Theory and Its Application in Structural and Soil Me chanics", Bornholm, Denmark, August 31 -September 9,1982. The proceedings are organized in two parts. The first part contains 12 papers by the invited lecturers and the second part contains 23 papers by participants plus one paper from an invited lecturer (la~e arrival). The Institute dealt with specific topics on application of modem reliability theories in structural engineering and soil mechanics. Both fundamental theory and more ad vanced theory were covered. Lecture courses were followed by tutorial and summary discussions with active participation of those attending the Institute. Special lectures of topical subjects were given by a number of invited speake~, leading to plenary dis cussions and summary statements on important aspects of application of modem .re liability theory in structural engineering and soil mechanics. A great number of the participants presented brief reports of their own research activities.
To understand what we know and be aware of what is to be known has become the central focus in the treatment of CAD/CAM issues. It has been some time since we began treating issues arriving from engineering data handling in a low key fashion because of its housekeeping chores and data maintenance aspects representing nonglamorous issues related to automation. Since the advent of CAD/CAM, large numbers of data bases have been generated through standalone CAD systems. And the rate of this automated means of generating data is rapidly increasing; this is possibly the key factor in changing our way of looking at engineering data related problems. As one deeply involved with engineering data handling and CAD/CAM applications, I know that to succeed, we must do our homework: tracking the trends, keeping abreast of new technologies, new applications, new companies and products that are exploding on the scene every day. In today's fast-paced information handling era, just keeping up is a full-time job. That is why ATI has initiated these publications, in order to bring to the users some of the information regarding their experiences in the important fields of CAD/CAM and engineering data handling. This volume contains some of the paper, including revisions, which were presented at the Fifth Automation Technology Conference held in Monterey, California. A series of publications has been initiated through cooperation between ATI and the Kluwer Academic Publishers. The first volume was Advances in Engineering Data Handling-Case Studies.
This book provides a comprehensive review of the production of smelter grade alumina from bauxite ores. It emphasizes the best practices applied in the industry today but seen in a historical context with a view to future challenges and developments. The control of alumina quality is discussed in detail including the effects that alumina quality have on the aluminum smelter process with respect to environmental performance, current efficiency, and metal purity. The discussion of alumina quality will be relevant to people on the smelter side, as this is the interface between refinery and smelter. Emphasis is placed on the major steps of the Bayer Process including: digestion, clarification, precipitation, calcination, and management of water, energy, and bauxite residue. This book is a valuable resource for active, seasoned practitioners and for new engineers entering the industry.
The study of scan statistics and their applications to many different scientific and engineering problems have received considerable attention in the literature recently. In addition to challenging theoretical problems, the area of scan statis tics has also found exciting applications in diverse disciplines such as archaeol ogy, astronomy, epidemiology, geography, material science, molecular biology, reconnaissance, reliability and quality control, sociology, and telecommunica tion. This will be clearly evident when one goes through this volume. In this volume, we have brought together a collection of experts working in this area of research in order to review some of the developments that have taken place over the years and also to present their new works and point out some open problems. With this in mind, we selected authors for this volume with some having theoretical interests and others being primarily concerned with applications of scan statistics. Our sincere hope is that this volume will thus provide a comprehensive survey of all the developments in this area of research and hence will serve as a valuable source as well as reference for theoreticians and applied researchers. Graduate students interested in this area will find this volume to be particularly useful as it points out many open challenging problems that they could pursue. This volume will also be appropriate for teaching a graduate-level special course on this topic."
Thermal Separation Technology is a key discipline for many industries and lays the engineering foundations for the sustainable and economic production of high-quality materials. This book provides fundamental knowledge on this field and may be used both in university teaching and in industrial research and development. Furthermore, it is intended to support professional engineers in their daily efforts to improve plant efficiency and reliability. Previous German editions of this book have gained widespread recognition. This first English edition will now make its content available to the international community of students and professionals. In the first chapters of the book the fundamentals of thermodynamics, heat and mass transfer, and multiphase flow are addressed. Further chapters examine in depth the different unit operations distillation and absorption, extraction, evaporation and condensation, crystallization, adsorption and chromatography, and drying, while the closing chapter provides valuable guidelines for a conceptual process development.
This book sheds light on the large-scale engineering systems that shape and guide our everyday lives. It does this by bringing together the latest research and practice defining the emerging field of Complex Engineered Systems. Understanding, designing, building and controlling such complex systems is going to be a central challenge for engineers in the coming decades. This book is a step toward addressing that challenge.
Manufacturing has entered the early stages of a revolutionary period caused by the convergence of three powerful trends: * The rapid advancement and spread of manufacturing capabilities worldwide has created intense competition on a global scale. * The emergence of advanced manufacturing technologies is dramati cally changing both the products and processes of modern manufac turing. * Changes in traditional management and labor practices, organiza tional structures, and decision-making criteria represent new sources of competitiveness and introduce new strategic opportunities. These trends are interrelated and their effects are already being felt by the u.s. manufacturing community. Future competitiveness for manu facturers worldwide will depend on their response to these trends. Based on the recent performance of u.s. manufacturers, efforts to respond to the challenges posed by new competition, technology, and managerial opportunities have been slow and inadequate. Domestic markets that were once secure have been assailed by a growing number of foreign competitors producing high quality goods at low prices. In a number of areas, such as employment, capacity utilization, research and development expenditures, and capital investment, trends in u.s. manufacturing over the last decade have been unfavorable or have not kept pace with major foreign competitors, such as Japan. There is substantial evidence that many u.s. manufacturers have neglected the manufacturing function, have overemphasized product development at the expense of process improvements, and have not begun to make the adjustments that will be necessary to be competitive.
The University of Genoa - Ohio State University Joint Conference on New Trends in Systems Theory was held at the Badia di S. Andrea in Genoa on July 9-11, 1990. This Proceedings volume contains articles based on two of the three Plenary talks and most of the shorter presentations. The papers are arranged by author, and no attempt has been made to organize them by topic. We would like to thank the members of the Scientific Committee and of the Program Committee, the speakers and authors, and everyone who attended the conference. Approximately 120 researchers and students from all over the world visited Genoa for the meeting, representing a wide spectrum of areas in pure and applied control and systems theory. The success of the conference depended on their high level of scientific and engineering expertise, not to mention their enthusiasm. The Conference on New Trends in Systems Theory would not have been possible without the help of a great many institutions and people. We would like to thank the University of Genoa, particularly Professor Enrico Beltrametti, and the Ohio State University's Columbian Quincentenary Committee led by Professor Christian Zacher, for encouragement and financial assistance. The University of Genoa Mathematics Department and Communication, Computer and System Sciences Department supplied assistance and technical help. The staff of the Consorzio Genova Ricerche, particularly Ms. Piera Ponta and Ms. Camilla Marconi, worked diligently over many months and especially during the conference itself to insure a smooth and enjoyable meeting.
Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration prediction of hydraulic machinery.
This book provides a solid background for understanding the immediate past, the ongoing present, and the emerging trends of additive manufacturing, with an emphasis on innovations and advances in its use for a wide spectrum of manufacturing applications. It contains contributions from leading authors in the field, who view the research and development progress of additive manufacturing techniques from the unique angle of developing high-performance composites and other complex material parts. It is a valuable reference book for scientists, engineers, and entrepreneurs who are seeking technologically novel and economically viable innovations for high-performance materials and critical applications. It can also benefit graduate students and post-graduate fellows majoring in mechanical, manufacturing, and material sciences, as well as biomedical engineering.
The book offers a sound, easily readable theoretical back- ground for dependability prediction and analysis of enginee- ring systems. The book bridges the gap between the real life dependability problems and very sophisticated and highly specialized books in this field. It is addressed to a broad readership including practicing engineers, reliability ana- lysts and postgraduate students of engineering faculties. The professionals in the field may also find some new mate- rial that is not covered in available textbooks such as fuz- zy logic evaluation of dependability performance, uncertain- ty assessment, open loop sequential analysis of discrete state stochastic processes, approximate solving of Markov systems.
Numerous areas of expertise are often required for the inspection of an individual product, with many different sensors being used within a single inspection machine. For this reason it is necessary for the production engineer to have at least a working knowledge of all the different technologies that may be employed. This book covers the majority of sensors that can be applied on the shop floor and has been designed to assist engineers with little or no previous experience in the various fields. The information that the book contains is of a highly practical nature and is based on the author's considerable first-hand experience of varied industrial applications.
This book is designed for the chemist, formulator, student, teacher, forensic scientist, or others who wish to investigate the composition of polymeric materials. Theinformationwithinthesepagesisintendedtoarmthereaderwiththenecessary workingknowledgetoanalyze, characterize, anddeformulatematerials. ThestructureoftheContentsisintendedtoassistthereaderinquicklylocating the subject of interest and proceed to it with a minimum of expended time and effort. The Contents provides an outline of major topics and relevant materials char- terizedforthereader'sconvenience. Anintroductiontoanalysisanddeformulation is provided in Chapter 1 to acquaint the reader with analytical methods and their applications. Extensive references are provided as additional sources ofinfor- tion. All tables arelocatedin theAppendix, beginning onp. 235. GUIDE FOR USE This is a practical book structured to efficiently use the reader's time with a minimum effort of searching for entries and information by following these brief instructions: 1. Searchthe Contents and/orIndex fora subject withinthe text. 2. Analysis/deformulation principles are discussed at the outset to familiarize the reader with analysis methods and instruments; followed by formu- tions, materials, and analysis ofpaint, plastics, adhesives, and inks; and finally reformulation methods to test the results of analysis. 3. Materials and a wide assortment of formulations are discussed within the text by chapter/section number. 4. Materials are referred toby various names (trivial, trade, and scientific), and these are listed in tables and cross-referenced to aid the reader.
Proceedings of the Third Symposium on Heavy Gas and Risk Assessment, Bonn, Wissenschaftszentrum, November 12-13, 1984
Originally published in 1967, this title reveals how the missionaries, so often misguided and short-sighted, were in fact pioneers of modernization, science and freedom. The structure of the book allows for comparative analysis and the volume illustrates how some of the social consequences of action through the schools could be foreseen. In addition light is thrown on the results of Imperial rule during the nineteenth century and on the nature of the impact of Western education in Asia and Africa.
Design for Manufacturability and Statistical Design: A Comprehensive Approach presents a comprehensive overview of methods that need to be mastered in understanding state-of-the-art design for manufacturability and statistical design methodologies. Broadly, design for manufacturability is a set of techniques that attempt to fix the systematic sources of variability, such as those due to photolithography and CMP. Statistical design, on the other hand, deals with the random sources of variability. Both paradigms operate within a common framework, and their joint comprehensive treatment is one of the objectives of this book and an important differentation.
Printing Peptide Arrays with a Complementary Metal Oxide Semiconductor Chip, by Felix F. Loeffler, Yun-Chien Cheng, Bastian Muenster, Jakob Striffler, Fanny C. Liu, F. Ralf Bischoff, Edgar Doersam, Frank Breitling, Alexander Nesterov-Mueller. Protein Engineering as a Tool for the Development of Novel Bio production Systems, by Uwe T. Bornscheuer. Compartmentalization and Metabolic Channeling for Multienzymatic Biosynthesis: Practical Strategies and Modeling Approaches, by U. Jandt, C. You, Y. H.-P. Zhang, A.-P. Zeng. Cell-Free Systems: Functional Modules for Synthetic and Chemical Biology, by Marlitt Stech, Andreas K. Brodel, Robert B. Quast, Rita Sachse, Stefan Kubick. New Bio production Systems: From Molecular Circuits to Novel Reactor Concepts in Cell-Free Biotechnology, by Steffen Rupp. Cell-free Biosystems in the Production of Electricity and Bioenergy, by Zhiguang Zhu, Tsz Kin Tam, Y.-H. Percival Zhang. In Vitro Multi enzymatic Reaction Systems for Biosynthesis, by Ines Ardao, Ee Taek Hwang, An-Ping Zeng. Directed Multistep Biocatalysis Using Tailored Permeabilized Cells, by Steffen Krauser, Christian Weyler, Lisa Katharina Blass, Elmar Heinzle."
Drives and Control for Industrial Automation presents the material necessary for an understanding of servo control in automation. Beginning with a macroscopic view of its subject, treating drives and control as parts of a single system, the book then pursues a detailed discussion of the major components of servo control: sensors, controllers and actuators. Throughout, the mechatronic approach a synergistic integration of the components is maintained, in keeping with contemporary practice. The authors holistic approach does not preclude the reader from learning in a step-by-step fashion each chapter contains material that can be studied separately without compromising understanding. Drives are described in several chapters organized according to the way they are usually classified in industry, each comprised of its actuators and sensors. The controller is discussed alongside. Topics of recent and current interest piezoelectricity, digital communications and future trends are detailed in their own dedicated chapters. Drives and Control for Industrial Automation is primarily written for engineers and researchers interested in the applications of sensors, actuators and control systems in the automated environment. The discussion is thorough with the basics laid out succinctly but in sufficient detail to be useful to non-expert readers so students will also find this monograph a profitable source of information."
This thesis reports on an innovative production-scheduling model for virtual computer-integrated manufacturing (VCIM) systems. It also describes a robust genetic algorithm for production scheduling in VCIM systems. The model, which is the most comprehensive of its kind to date, is not only capable of supporting collaborative shipment scheduling and handling multiple product orders simultaneously, but also helps cope with multiple objective functions under uncertainties. In turn, the genetic algorithm, characterised by an innovative algorithm structure, chromosome encoding, crossover and mutation, is capable of searching for optimal/suboptimal solutions to the complex optimisation problem in the VCIM production- scheduling model described. Lastly, the effectiveness of the proposed approach is verified in a comprehensive case study.
Structure formation in crystallizing polymers, as occurring during processing, has not been treated so far in a coherent form. This fact explains, why this monograph is written as the ?rst book devoted to this subject. A quarter of a century ago the underdevelopment of this subject was obvious. Trial and error dominated. In fact, other apposite subjects as polymer melt rheology or heat transfer, had reached high levels. A great number of books has been devoted to them. Mold ?lling of amorphous polymers and the solidi?cation of these polymers by vitri?cation can nowadays be simulated numerically with a high degree of accuracy. In the solidi?ed sample even residual stresses and corresponding birefringence effects can accurately be 1 calculated . However, semicrystalline polymers, which form the majority of industrial po- mers, have been excluded from these considerations for good reasons. In fact, great uncertainties existed about the formation of quality determining crystalline str- tures. In particular, polyole?ns suffered from this shortcoming. In 1983 this fact instigated the polymer research group at the Johannes Kepler University in Linz to start with pertinent activities. The urgency of this kind of studies becomes evident, if advantages and hitches of these polymers are considered. 1. Versatility of processing: Injection molding into a great variety of shapes and sizes, from thin walled beakers to garden chairs, not to forget pipe and pro?le extrusion, cable coating, ?ber spinning, ?lm blowing. 2. Product qualities: Ductility, low density, good electric insulation, corrosion resistance, surface quality.
Direct Engineering (DE) is the creation of a product development cycle into a single, unified process. The design process in most industries is an evolutionary one (i.e., incremental changes to some existing design). DE is a manufacturing process that seeks to improve the design processes by providing complete archival documentation of existing designs. It uses three-dimensional geometric models with integrated manufacturing information throughout the design process. DE reduces the design cycle, and the variety and number of engineering changes. This process decreases the design cycle time, increases productivity, and provides a higher quality product. The required technologies and methodologies that will support the development of the DE environment are: (1) product representation using feature-based modeling; (2) knowledge-based applications that will support the entire product development cycle; (3) an engineering environment implemented around distributed computing and object-oriented systems; (4) direct manufacturing techniques using rapid prototyping. Direct Engineering: Toward Intelligent Manufacturing addresses the following recent topics related to the development, implementation, and integration of the DE environment: (1) the current scope of the research in intelligent manufacturing; (2) the results of the technologies and tools developed for integrated product and process designs, and (3) examination of the methodologies and algorithms used for the implementation of direct engineering. |
You may like...
Engineering Problems - Uncertainties…
Marcos S.G. Tsuzuki, Rogerio Y. Takimoto, …
Hardcover
R2,624
Discovery Miles 26 240
Manufacturing, Modelling, Management and…
George Chryssolouris, D. Mourtzis
Paperback
R2,034
Discovery Miles 20 340
Quality Assurance and Quality Management
Y. Anjaneyulu, R Marayya
Hardcover
|