![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Production engineering
This book highlights the analytics and optimization issues in industry, to propose new approaches, and to present applications of innovative approaches in real facilities. In the past few decades there has been an exponential rise in the application of artificial intelligence for solving complex and intricate problems arising in industrial domain. The versatility of these techniques have made them a favorite among scientists and researchers working in diverse areas. The book is edited to serve a broad readership, including computer scientists, medical professionals, and mathematicians interested in studying computational intelligence and their applications. It will also be helpful for researchers, graduate and undergraduate students with an interest in the fields of Artificial Intelligence and Industrial problems. This book will be a useful resource for researchers, academicians as well as professionals interested in the highly interdisciplinary field of Artificial Intelligence.
This book is a hands-on single-source reference of tools, techniques, and processes integrating both Lean and Six Sigma. This comprehensive handbook provides up-to-date guidance on how to use these tools and processes in different settings, such as start-up companies and stalled projects, as well as establish enterprises where the ongoing drive is to improve processes, profitability, and long-term growth. It contains the "hard" Six Sigma approach as well as the flexible approach of FIT SIGMA, which is adaptable to manufacturing and service industries and also public sector organisations. You will also discover how climate change initiatives can be accelerated to sustainable outcomes by the holistic approach of Green Six Sigma. The book is about what we can do now with leadership, training, and teamwork in every sphere of our businesses. Lean, originally developed by Toyota, is a set of processes and tools aimed at minimising wastes. Six Sigma provides a set of data-driven techniques to minimise defects and improve processes. Integrating these two approaches provides a comprehensive and proven approach that can transform an organisation. To make change happen, we need both digital tools and analog approaches. We know that there has been a continuous push to generate newer approaches to operational excellence, such as Total Quality Management, Six Sigma, Lean Sigma, Lean Six Sigma, and FIT SIGMA. It is vital that we harness all our tools and resources to regenerate the economy after the Covid-19 pandemic and make climate change initiatives successful for the survival of our planet. Six Sigma and its hybrids (e.g., Lean Six Sigma) should also play a significant part. Over the last three decades, operational performance levels of both public sector and private sector organisations improved significantly and Lean Six Sigma has also acted as a powerful change agent. We urgently need an updated version of these tools and approaches. The Green Six Sigma Handbook not only applies appropriate Lean and Six Sigma tools and approaches, fitness for the purpose, but it aims at sustainable changes. This goal of sustainability is a stable bridge between Lean Six Sigma and climate change initiatives. Hence, when the tools and approaches of Lean Six Sigma are focused and adapted primarily to climate change demands, we get Green Six Sigma.
This book is written primarily for engineers who want to use statistical designs for quality engineering, and for statisticians who want to know the wide range of applications of experimental design in the manufacturing industry. Significantly, Robust Design and Analysis for Quality Engineering addresses the following techniques: Taguchi's quality engineering approaches, concepts of robustness in experimental designs, response surface design and its applications, Pareto-type ANOVA for analysis of parameter design, and strategies of quality improvement efforts through robust design and analysis. Through a series of real case studies, these important techniques are made readily accessible to all readers. This is also the key text for senior undergraduate and postgraduate students studying engineering and experimental design.
This book includes best selected, high-quality research papers presented at the International Conference on Intelligent Manufacturing and Energy Sustainability (ICIMES 2021) held at the Department of Mechanical Engineering, Malla Reddy College of Engineering & Technology (MRCET), Maisammaguda, Hyderabad, India, during June 18-19, 2021. It covers topics in the areas of automation, manufacturing technology and energy sustainability and also includes original works in the intelligent systems, manufacturing, mechanical, electrical, aeronautical, materials, automobile, bioenergy and energy sustainability.
This book covers historical aspects and future directions of mechanical and industrial engineering. Chapters of this book include applied mechanics and design, tribology, machining, additive manufacturing and management of industrial technologies.
Water is a paramount determinant of quality of life. The WHO experts believe that the sickness and death rates of the world population could be reduced by 75% by maintaining good quality of drinking water. That is why thirty-one leading scientists and specialists from fifteen countries gathered in November 2003 at the NATO Advanced Research Workshop (ARW) on "Modern Tools and Methods of Water Treatment for Improving Living Standards" in Dnepropetrovsk, Ukraine, to discuss the scientific concepts and practical means for the solution of the complex social, economic and ecological problems associated with water purification, consumption, conservation, and protection. All this is covered in this book of proceedings of the NATO ARW. This book contains four parts. In Part 1, the readers will find recent advances in drinking water treatment in the United States, biological control in water-cooling towers, analytical control of drinking water quality, and the use of radionuclides for monitoring global contamination. In Part 2, some innovative methods and tools, such as electrochemically-stimulated sorption and sorption-membrane methods, a bubble-extraction method, fibroid sorbents, in-situ oxygen curtain technology, use of ion-exchange membranes, electrochemically-generated silver and copper ions and colloidal gold for water purification and post-purification are presented. In Part 3, recent studies into the treatment of wastewaters could be found. Among them: water reclamation and recycling in Danish industry, biocide polymers as a new opportunity in water treatment, optimization of galvanic wastewater treatment processes, efficiency of nitrification and denitrification processes inwastewater treatment plants, electrochemical processes for wastewater purification employing fluidized beds of particles, cold plasma as a new tool for purification of wastewater from chemical contaminants, bacteria and viruses. In Part 4, examples of management of water resources in the United Kingdom, Bulgaria, Poland, Croatia, and Romania using a variety of case studies are presented. Also, the important issue of industry-university cooperation for postgraduate education and training in the water treatment area is discussed. We believe that this book will be helpful to the international community of scientists, specialists and students dealing with water treatment, purification, conservation and protection.
This volume gathers the latest advances, innovations and applications in the field of condition monitoring, plant maintenance and reliability, as presented by leading international researchers and engineers at the 5th International Conference on Maintenance Engineering and the 2020 Annual Conference of the Centre for Efficiency and Performance Engineering Network (IncoME-V & CEPE Net-2020), held in Zhuhai, China on October 23-25, 2020. Topics include vibro-acoustics monitoring, condition-based maintenance, sensing and instrumentation, machine health monitoring, maintenance auditing and organization, non-destructive testing, reliability, asset management, condition monitoring, life-cycle cost optimisation, prognostics and health management, maintenance performance measurement, manufacturing process monitoring, and robot-based monitoring and diagnostics. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.
This book presents the latest theories and methods of reliability and quality, with emphasis on reliability and quality in design and modelling. Each chapter is written by active researchers and professionals with international reputations, providing material which bridges the gap between theory and practice to trigger new practices and research challenges. The book therefore provides a state-of-the-art survey of reliability and quality in design and practices.
Process Control details the core knowledge and practical skills that a successful process control practitioner needs. It explains the essential technologies that are in use in current industrial practice or which may be wanting for the future. The book focuses on practical considerations, not only on those that make a control solution work, but also on those that prevent it from failing, especially for complex control loops and plant-wide control solutions. After discussing the indispensable role of control in modern process industries, the authors concentrate on the skills required for process analysis, control design, and troubleshooting. One of the first books to provide a systematic approach and structured methodology for process analysis and control design, Process Control illustrates that methodology with many practical examples that cover process control, equipment control, and control calculations derived from real projects and applications. The book uses 229 drawings and 83 tables to make the concepts it presents more intuitive and its methodology easy to follow. Process Control will help the practising control engineer to benefit from a wealth of practical experience and good ideas on how to make control work in the real world and students training to take up roles in process control are shown the applied relevance of control theory in the efficient functioning of industrial plant and the considerations needed to make it work. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This book presents the proceedings of the International Conference on Health, Safety, Fire, Environment, and Allied Sciences 2020. It highlights latest developments in the field of science and technology aimed at improving health and safety in the workplace. The volume comprises content from leading scientists, engineers, and policy makers discussing issues relating to industrial safety, fire hazards and their management in industry, forests and other settings. Also dealt with are issues of occupational health in engineering, process and agricultural industry and protection against incidents of arson and terror attacks. The contents of this volume will be of interest to researchers, practitioners, and policy makers alike.
The manufacturing industry is a cornerstone of national economy and people's livelihood. It is the way of transforming resources into products or goods which are required to cater to the needs of the society. Traditional manufacturing companies currently face several challenges such as rapid technological changes, inventory problem, shortened innovation, short product life cycles, volatile demand, low prices, highly customized products, and ability to compete in the global markets. Modern manufacturing is highly competitive due to globalization and fast changes in the global market. This book reviews emerging technologies in manufacturing. These technologies include artificial intelligence, smart manufacturing, lean manufacturing, robotics, automation, 3D printing, nanotechnology, industrial Internet of things, and augmented reality. The use of these technologies will have a profound impact on the manufacturing industry. The book consists of 19 chapters. Each chapter addresses a single emerging technology in depth and describes how manufacturing organizations are adopting the technology. The book fills an important niche for manufacturing. It is a comprehensive, jargon-free introductory text on the issues, ideas, theories, and problems on emerging technologies in manufacturing. It is a must-read book for beginners or anyone who wants to be updated about emerging technologies.
This book is presented to demonstrate how energy efficiency can be achieved in existing systems or in the design of a new system, as well as a guide for energy savings opportunities. Accordingly, the content of the book has been enriched with many examples applied in the industry. Thus, it is aimed to provide energy savings by successfully managing the energy in the readers' own businesses. The authors primarily present the necessary measurement techniques and measurement tools to be used for energy saving, as well as how to evaluate the methods that can be used for improvements in systems. The book also provides information on how to calculate the investments to be made for these necessary improvements and the payback periods. The book covers topics such as: * Reducing unit production costs by ensuring the reduction of energy costs, * Efficient and quality energy use, * Meeting market needs while maintaining competitive conditions, * Ensuring the protection of the environment by reducing CO2 and CO emissions with energy saving and energy efficiency, * Ensuring the correct usage of systems by carrying out energy audits. In summary, this book explains how to effectively design energy systems and manage energy to increase energy savings. In addition, the study has been strengthened by giving some case studies and their results in the fields of intensive energy consumption in industry. This book is an ideal resource for practitioners, engineers, researchers, academics, employees and investors in the fields of energy, energy management, energy efficiency and energy saving.
This book includes original, peer-reviewed research papers from the 12th China Academic Conference on Printing and Packaging (CACPP 2021), held in Beijing, China on November 12-14, 2021. The proceedings cover the recent findings in color science and technology, image processing technology, digital media technology, mechanical and electronic engineering and numerical control, materials and detection, digital process management technology in printing and packaging, and other technologies. As such, the book is of interest to university researchers, R&D engineers and graduate students in the field of graphic arts, packaging, color science, image science, material science, computer science, digital media, network technology, and smart manufacturing technology.
The primary objective of the book is to provide advanced undergraduate or frrst-year graduate engineering students with a self-contained presentation of the principles fundamental to the analysis, design and implementation of computer controlled systems. The material is also suitable for self-study by practicing engineers and is intended to follow a first course in either linear systems analysis or control systerns. A secondary objective of the book is to provide engineering and/or computer science audiences with the material for a junior/senior-level course in modern systems analysis. Chapters 2, 3, 4, and 5 have been designed with this purposein rnind. The emphasis in such a course is to develop the rnathernatical tools and methods suitable for the analysis and design of real-time systems such as digital filters. Thus, engineers and/or computer scientists who know how to program computers can understand the mathematics relevant to the issue of what it is they are programrning. This is especially important for those who may work in engineering and scientific environments where, for instance, programrning difference equations for real-time applications is becorning increasingly common. A background in linear algebra should be an adequate prerequisite for the systems analysis course. Chapter 1 of the book presents a brief introduction to computer controlled systems. It describes the general issues and terminology relevant to the analysis, design, and implementation of such systems.
This book, to reflect the system's diverse, relevant characteristics, uses three different mathematical tools, namely probability theory, fuzzy theory and random fuzzy theory, to model and analyze the reliability of each system. Reliability system engineering is an interdisciplinary area that chiefly focuses on the lifecycle characteristics of products and involves many fields of basic mathematics, technical science and management science. In recent years, there have been many books on reliability theory, but comparatively few on the reliability of mathematical models, or the reliability of mathematical models based on single probability theory or fuzzy theory. The findings presented here will not only enrich and expand traditional reliability theory, but also promote the development of related disciplines, lending the book considerable theoretical significance.
This book presents a guide to digital twin technologies and their applications within manufacturing. It examines key technological advances in the area of Industry 4.0, including numerical and experimental models and the Internet of Things (IoT), and explores their potential technical benefits through real-world application examples. This book presents digital models of advanced manufacturing processes dynamics that enable to control the cutting processes including experimental and simulation studies for brittle-ductile transition of ultra-precision machining materials assuring product quality. Innovative electrical power harvesting solutions from tool vibrations and wireless data transmission from confined and heavily cooled environment are also included. It explains the benefits of virtual and physical twins adapted to real systems, including the ability to shorten the product's path to the market, and enabling the transition to higher value-added manufacturing processes. Including numerous illustrations and clear solved problems, this book will be of interest to researchers and industry professionals in the fields of mechatronics, manufacturing engineering, computational mechanics.
This book introduces the reliability modelling and optimization of warm standby systems. Warm standby is an attractive redundancy technique, as it consumes less energy than hot standby and switches into the active state faster than cold standby. Since a warm standby component experiences different failure rates in the standby state and active state, the reliability evaluation is challenging and the existing works are only restricted to very special cases. By adapting the decision diagrams, this book proposes the methodology to evaluate the reliability of different types of warm standby systems and studies the reliability optimization. Compared with existing works, the proposed methods allow the system to have an arbitrary number of components and allow the failure time distribution of components to observe arbitrary distributions. From this book, the readers can not only learn how to evaluate and optimize the reliability of warm standby systems but also use the methods to study the reliability of other complex systems.
This book focuses on the implementation of AI for growing business, and the book includes research articles and expository papers on the applications of AI on decision-making, health care, smart universities, public sector and digital government, FinTech, and RegTech. Artificial Intelligence (AI) is a vital and a fundamental driver for the Fourth Industrial Revolution (FIR). Its influence is observed at homes, in the businesses and in the public spaces. The embodied best of AI reflects robots which drive our cars, stock our warehouses, monitor our behaviors and warn us of our health, and care for our young children. Some researchers also discussed the role of AI in the current COVID-19 pandemic, whether in the health sector, education, and others. On all of these, the researchers discussed the impact of AI on decision-making in those vital sectors of the economy.
This book is aimed at readers who need to learn the latest solutions for interconnected simulation, testing, and prediction technologies that improve engineering product efficiency, including reliability, safety, quality, durability, maintainability, life-cycle costing and profit. It provides a detailed analysis of technologies now being used in industries such as electronics, automotive, aircraft, aerospace, off-highway, farm machinery, and others. It includes clear examples, charts, and illustrations. This book provides analyses of the simulation, testing, and prediction approaches and methodologies with descriptive, negative trends in their development. The author discusses why many current methods of simulation, testing, and prediction are not successful and describes novel techniques and tools developed for eliminating these problems. This book is a tool for engineers, managers, researches in industry, teachers, and students. Lev Klyatis, Hab. Dr.-Ing., ScD., PhD, Senior Advisor SoHaR, Inc., has been a professor at Moscow State Agricultural Engineering University, research leader and chairman of State Enterprise TESTMASH, and served on the US Technical Advisory Group for the International Electrotechnical Commission (IEC), the ISO/IEC Join Study Group in Safety Aspects of Risk Assessment, the United Nations European Economical Commission, and US-USSR Trade and Economic Council. He is presently a member of World Quality Council, the Elmer A. Sperry Board of Award, SAE International G-41 Reliability Committee, the Integrated Design and Manufacturing Committee and session chairman of SAE International World Congresses in Detroit since 2012. His vast experience and innovation enable him to create a new direction for the successful prediction of product efficiency during any given time, including accurate simulation of real-world conditions, accelerated reliability and durability testing technology, and reducing recalls. His approach has been verified in various industries, primarily automotive, farm machinery, aerospace, and aircraft industries. He has shared his new direction working as the seminar instructor and consultant to Ford, DaimlerChrysler, Nissan, Toyota, Jatko Ltd., Thermo King, Black an Dekker, NASA Research Centers, Karl Schenck, and many others. He holds over 30 patents worldwide and is the author of over 300 publications, including 15 books.
This book uses kinematics, mechanics, mathematics, and so on, to systematically propose the fixturing performance evaluation and fixturing layout planning method. The proposed method is a novel method, including the analysis method of locating determination, the analysis method of workpiece stability, the analysis method of clamping reasonability, the analysis method of workpiece attachment/detachment, the analysis method of locating accuracy, and the planning algorithm of locating point layout, the planning algorithm of clamping force, and so forth. It can enrich and develop the basic theory of computer aided fixture design, change the empirical method of fixture design. The combination of theoretical analysis and mathematical modeling technology can resolve the key problems in the process of fixture design, which will play a certain role in promoting the progress of manufacturing technology, improving the precision and level of product manufacturing, and meeting the higher and higher requirements of mechanical manufacturing industry.
This book presents the select proceedings of the National Conference on Research and Developments in Material Processing, Modelling and Characterization (RDMPMC 2020). It covers the recent advances in manufacturing processes. The book explains various manufacturing process technologies based on surface modification, welding, mechanical deformation, and heat treatment. It also covers the topics such as microstructural characterization and properties evaluation, corrosion, and tribology. The book will be useful to researchers, students and professionals working in areas related to materials processing and characterization.
"Schedule-Based Modeling of Transportation Networks: Theory and Applications" follows the book Schedule-Based Dynamic Transit Modeling, published in this series in 2004, recognizing the critical role that schedules play in transportation systems. Conceived for the simulation of transit systems, in the last few years the schedule-based approach has been expanded and applied to operational planning of other transportation schedule services besides mass transit, e.g. freight transport. This innovative approach allows forecasting the evolution over time of the on-board loads on the services and their time-varying performance, using credible user behavioral hypotheses. It opens new frontiers in transportation modeling to support network design, timetable setting, and investigation of congestion effects, as well as the assessment of such new technologies, such as users system information (ITS technologies).
This book provides an overview of the latest developments in the field of risk analysis (RA). Statistical methodologies have long-since been employed as crucial decision support tools in RA. Thus, in the context of this new century, characterized by a variety of daily risks - from security to health risks - the importance of exploring theoretical and applied issues connecting RA and statistical modeling (SM) is self-evident. In addition to discussing the latest methodological advances in these areas, the book explores applications in a broad range of settings, such as medicine, biology, insurance, pharmacology and agriculture, while also fostering applications in newly emerging areas. This book is intended for graduate students as well as quantitative researchers in the area of RA.
This book introduces the metal magnetic memory (MMM) technique, one of the nondestructive testing methods, and its applications in remanufacturing engineering. It discusses the advantages of MMM and how to evaluate the early damage degree of remanufacturing cores, as well as the repairing quality of remanufactured components. Various MMM signal characteristics are extracted to reflect the damage degree of remanufacturing cores, coatings and interfaces. All the theoretical models, analysis methods and testing results of MMM in this book provide guidance to control the quality of remanufactured parts and products. This book can help readers make the best use of the MMM technique in remanufacturing engineering. |
You may like...
Responsive Web Design with HTML 5 & CSS
Jessica Minnick
Paperback
Techniques and Tools for Designing an…
Panagiotis Karampelas
Hardcover
R3,325
Discovery Miles 33 250
|