![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Production engineering
The book explains the importance of and investigates the quality management aspects in micro, small and medium enterprises (MSME) sectors. It emphasizes on the need of quality management practice and explores the applicability of various quality tools in MSMEs and stages in company where quality management practices are applied. Various topics covered in this book include control charts, Pareto charts, customer relationship management, failure mode effect analysis, QMS implementation stages, competitiveness, and benefits of QM practices. This book will be useful for the researchers and industry professionals from the areas of mechanical engineering, industrial engineering, and manufacturing.
Design and manufacturing is the essential element in any product development lifecycle. Industry vendors and users have been seeking a common language to be used for the entire product development lifecycle that can describe design, manufacturing and other data pertaining to the product. Many solutions were proposed, the most successful being the Stadndard for Exchange of Product model (STEP). STEP provides a mechanism that is capable of describing product data, independent from any particular system. The nature of this description makes it suitable not only for neutral file exchange, but also as a basis for implementing, sharing and archiving product databases. ISO 10303-AP203 is the first and perhaps the most successful AP developed to exchange design data between different CAD systems. Going from geometric data (as in AP203) to features (as in AP224) represents an important step towards having the right type of data in a STEP-based CAD/CAM system. Of particular significance is the publication of STEP-NC, as an extension of STEP to NC, utilising feature-based concepts for CNC machining purposes. The aim of this book is to provide a snapshot of the recent research outcomes and implementation cases in the field of design and manufacturing where STEP is used as the primary data representation protocol. The 20 chapters are contributed by authors from most of the top research teams in the world. These research teams are based in national research institutes, industries as well as universities.
The management of production and service processes can be supported by microcomputer simulation models-effectively and inexpensively-if the techniques are presented in an understandable manner. Drs. Klafehn, Weinroth, and Boronico prove this and show how to do it-not only for the benefit of operations managers themselves, but for others with management responsibilities in a variety of businesses and industries. They will learn how important daily operations problems can be modeled on a microcomputer, gain understanding of overall simulation methodology, and learn the several forms of cost savings achievable through simulation. For teachers in business schools the book will also provide a link between general management and the management of engineering and R&D. The first chapter introduces the reader to the concepts and steps for undertaking a microcomputer simulation project. In addition, the benefits, drawbacks, and myths are reviewed in detail. Chapter two explores, in a conversational scenario, what is involved in taking a management operations problem involving a truck transfer depot from its point of inception to the formulation of a systems operation model, which in a later chapter is ultimately put into a computer simulation model and tested to, in a sense, come up with answers to the questions posed in the hypothetical conversation. Subsequent chapters in the book are oriented to a discussion of other operations management problems and the effort to seek insight and solutions through simulation modeling. A Just-in-Time manufacturing system is addressed, recognizing the push-pull concept as well as looking at the quality aspect. Attempting to determine the optimum levels for safety, stock, order points, and order quantity is investigated through computer simulation. These levels are predicated on balancing the costs associated with ordering and holding goods as well as the penalty costs of stocking out. Using a simulated environment enables the inclusion of the variability evidenced by the type of distribution. The remaining chapters also review alternative rules and what ifs as applied to machine configuration, facility location for a satellite EMS unit, and job shop operations. Each of the applications chapters provides a printout of the basic computer model, written in GPSS, that was then modified to investigate alternative scenarios.
The motivation for this monograph can be traced to a seminar on Simple Games given by Professor S.H. Tijs of the Catholic University at Nijmegen way back in 1981 or 1982 at the Delhi campus of the Indian Statistical Institute. As an ap plied statistician and a consultant in quality control, I was naturally interested in Reliability Theory. I was aquainted with topics in reliability like coherent systems, importance of components etc., mainly through Barlow and Proschan's book. At the seminar given by Professor Tijs, I noticed the striking similarity between the concepts in reliability and simple games and this kindled my interest in simple games. When I started going deep into the literature of simple games, I noticed that a number of concepts as well as results which were well known in game theory were rediscovered much later by researchers in reliability. Though the conceptual equivalence of coherent structures and simple games has been noticed quite early, it is not that much well known. In fact, the theoretical developments have taken place practically independent of each other, with considerable duplication of research effort. The basic objective of this monograph is to unify some of the concepts and developments in reliability and simple games so as to avoid further duplication."
Software has become a decisive cost and time factor in regard to developing and establishing manufacturing systems and setting them into operation. In addition, software determines the availability, reliability as well as functionality of manufacturing units. Software Engineering for Manufacturing Systems considers the methods and procedures required to deal with problems in the software engineering of control technology for manufacturing systems. Significantly, the following topics are addressed: * definitions and requirements of software for control technology * system design, describing forms of control software * CASE tools for the generation of a code * configuration, adaption of standard software variants, and re-usability of software * and man-machine interface. It contains the selected proceedings of the International Conference on Software Engineering and Case Tools for Control Technology of Manufacturing Systems, sponsored by the IFIP and held in Germany, in March 1996.
This book offers a collection of original peer-reviewed contributions presented at the 6th International Congress on Design and Modeling of Mechanical Systems (CMSM'2015), held in Hammamet, Tunisia, from the 23rd to the 25th of March 2015. It reports on both recent research findings and innovative industrial applications in the fields of mechatronics and robotics, dynamics of mechanical systems, fluid structure interaction and vibroacoustics, modeling and analysis of materials and structures, and design and manufacturing of mechanical systems. Since its first edition in 2005, the CMSM Congress has been held every two years with the aim of bringing together specialists from universities and industry to present the state-of-the-art in research and applications, discuss the most recent findings and exchange and develop expertise in the field of design and modeling of mechanical systems. The CMSM Congress is jointly organized by three Tunisian research laboratories: the Mechanical Engineering Laboratory of the National Engineering School of Monastir; the Mechanical Laboratory of Sousse, part of the National Engineering School of Sousse; and the Mechanical, Modeling and Manufacturing Laboratory at the National Engineering School of Sfax.
Industrial PID Controller Tuning presents a different view of the servo/regulator compromise that has been studied for a long time in industrial control research. Optimal tuning generally involves comparison of cost functions (e.g., a quadratic function of the error or a time-weighted absolute value of the error) but without taking advantage of available multi-objective optimization methods. The book does make use of multi-objective optimization to account for several sources of disturbance, applying them to a more realistic problem: how to select the tuning of a controller when both servo and regulator responses are important. The authors review the different deterministic multi-objective optimization methods. In order to ameliorate the consequences of the computational expense typically involved in their use-specifically the generation of multiple solutions among which the control engineer still has to choose-algorithms for two-degree-of-freedom PID control are implemented in MATLAB (R). MATLAB code and a MATLAB-compatible program are provided for download and will help readers to adapt the ideas presented in the text for use in their own systems. Further practical guidance is offered by the inclusion of several examples of common industrial processes amenable to the use of the authors' methods. Researchers interested in non-heuristic approaches to controller tuning or in decision-making after a Pareto set has been established and graduate students interested in beginning a career working with PID control and/or industrial controller tuning will find this book a valuable reference and source of ideas. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This book presents an in-depth study and elucidation on the mechanisms of the micro-cutting process, with particular emphasis and a novel viewpoint on materials characterization and its influences on ultra-precision machining. Ultra-precision single point diamond turning is a key technology in the manufacture of mechanical, optical and opto-electronics components with a surface roughness of a few nanometers and form accuracy in the sub-micrometric range. In the context of subtractive manufacturing, ultra-precision diamond turning is based on the pillars of materials science, machine tools, modeling and simulation technologies, etc., making the study of such machining processes intrinsically interdisciplinary. However, in contrast to the substantial advances that have been achieved in machine design, laser metrology and control systems, relatively little research has been conducted on the material behavior and its effects on surface finish, such as the material anisotropy of crystalline materials. The feature of the significantly reduced depth of cut on the order of a few micrometers or less, which is much smaller than the average grain size of work-piece materials, unavoidably means that conventional metal cutting theories can only be of limited value in the investigation of the mechanisms at work in micro-cutting processes in ultra-precision diamond turning.
Most successful organizations recognize Maintenance Parts and Procurement as a critical success factor to Asset Management Excellence and their fundamental supply chain value proposition. This book works as a guide to all the stakeholders that influence the success of their Maintenance Parts Operation and their enterprise's bottom line. Maintenance Parts Management Excellence: A Holistic Anatomy defines the Maintenance Parts Managements role in Asset Management Excellence and expands on the importance of the Parts Inventory Planner role in an organization. It discusses how to create a unique Maintenance Parts Management Strategy for an organization and offers insights on the multiple strategies needed to create and maintain a Maintenance Parts inventory policy. The book also provides an organized overall approach to creating Maintenance Parts Management Excellence in an enterprise. Executives with an organization responsible for the construction, management, and disposal of all assets classes (plant, equipment, IT assets), consultants responsible for assignments associated with optimizing life cycle decisions for clients, maintenance, and reliability professionals within an organization, will benefit from this professional plus book. Upper-level undergraduate engineering students, as well as graduate students of management who focus on operations management and engineering graduate students addressing issues of maintenance and reliability engineering, may also be interested in this book.
The intention of this book is to reveal and discuss some aspects of the metal fo- ing plasticity theory. The modern theory describes deformation of metallic bodies in cold and hot regimes under combined thermal and mechanical loadings. Th- mal and deformation fields appear in metal forming in various forms. A thermal field influences the material properties, modifies the extent of plastic zones, etc. and the deformation of metallic body induces changes in temperature distribution. The thermal effects in metal forming plasticity can be studied at two levels, - pending on whether uncoupled or coupled theories of thermo-plastic response have to be applied. A majority of metal forming processes can be satisfactorily studied within an uncoupled theory. In such an approach the temperature enters the stress-strain relation through the material constants and through the thermal dilatation. The description of thermo-plastic deformation in metal forming is c- ried out on the ground of thermodynamics.
This volumeaddressestheissueofuncertaintyincivilengineeringfromdesign toconstruction. Failures do occur in practice. Attributing them to a residual risk or a faulty execution of the projectdoesnotproperlycover the range of causes. A closer scrutiny of the design, the engineering model, the data, the soil-structure-interactionand the model assumptions is required. Usually, the uncertaintiesininitialandboundaryconditionsaswellasmaterialparameters are abundant. Current engineering practice often leaves these issues aside, despite the factthatnewscienti?c tools have been developed in the past decades that allow a rational description of uncertainties of all kinds, from model uncertainty to data uncertainty. It is the aim of this volume to have a critical look atcurrent engineering riskconcepts in order to raise awareness of uncertainty in numericalcom- tations, shortcomings of a strictly probabilistic safety concept, geotechnical models of failure mechanisms and their implications forconstruction mana- ment, execution, and the juristic questionas to who has to takeresponsibility. In addition, a number ofthe new procedures for modelling uncertaintyare- plained. Our central claim is that doubts and uncertainties must be openly - dressed in the design process. This contrasts certain tendencies in the en- neering community that, though incorporating uncertainties by one or the other way in the modelling process, claim to being able tocontrol the
The resilience of computing systems includes their dependability as well as their fault tolerance and security. It defines the ability of a computing system to perform properly in the presence of various kinds of disturbances and to recover from any service degradation. These properties are immensely important in a world where many aspects of our daily life depend on the correct, reliable and secure operation of often large-scale distributed computing systems. Wolter and her co-editors grouped the 20 chapters from leading researchers into seven parts: an introduction and motivating examples, modeling techniques, model-driven prediction, measurement and metrics, testing techniques, case studies, and conclusions. The core is formed by 12 technical papers, which are framed by motivating real-world examples and case studies, thus illustrating the necessity and the application of the presented methods. While the technical chapters are independent of each other and can be read in any order, the reader will benefit more from the case studies if he or she reads them together with the related techniques. The papers combine topics like modeling, benchmarking, testing, performance evaluation, and dependability, and aim at academic and industrial researchers in these areas as well as graduate students and lecturers in related fields. In this volume, they will find a comprehensive overview of the state of the art in a field of continuously growing practical importance.
Postponement strategy is one of the major supply chain management (SCM) pr- tices that has a discernible impact on rms' competitive advantage and organi- tional performance. Postponement is a mass customization strategy that captures the advantages of both mass production and mass customization. Recent research studies have identi ed four common postponement strategies, namely pull, logistics, form and price postponement. The former three postponement strategies are linked to production and manufacturing, while the last one is a pure pricing strategy. They aim at balancing the costs and bene ts of mass production and mass customization. Practical examples of postponement can be found in the high-tech industry, food industry and other industries that require high differentiation. However, empirical studies have found that postponement may not be an evident SCM practice compared to the other practices. In addition, postponement has both positive and negative impacts on a supply chain. The advantages include following the JIT principles, reducing end-product inventory, making forecasting easier and pooling risk. The high cost of designing and manufacturing generic components is the main drawback of postponement. Thus, the evaluation of postponement strategy is an important research issue and there have been many qualitative and quantitative models for analyzing postponement under different scenarios.
This book presents for the first time a methodology that combines the power of a modelling formalism such as colored petri nets with the flexibility of a discrete event program such as SIMIO. Industrial practitioners have seen the growth of simulation as a methodology for tacking problems in which variability is the common denominator. Practically all industrial systems, from manufacturing to aviation are considered stochastic systems. Different modelling techniques have been developed as well as mathematical techniques for formalizing the cause-effect relationships in industrial and complex systems. The methodology in this book illustrates how complexity in modelling can be tackled by the use of coloured petri nets, while at the same time the variability present in systems is integrated in a robust fashion. The book can be used as a concise guide for developing robust models, which are able to efficiently simulate the cause-effect relationships present in complex industrial systems without losing the simulation power of discrete-event simulation. In addition SIMIO's capabilities allows integration of features that are becoming more and more important for the success of projects such as animation, virtual reality, and geographical information systems (GIS).
Stochastic programming is the study of procedures for decision making under the presence of uncertainties and risks. Stochastic programming approaches have been successfully used in a number of areas such as energy and production planning, telecommunications, and transportation. Recently, the practical experience gained in stochastic programming has been expanded to a much larger spectrum of applications including financial modeling, risk management, and probabilistic risk analysis. Major topics in this volume include: (1) advances in theory and implementation of stochastic programming algorithms; (2) sensitivity analysis of stochastic systems; (3) stochastic programming applications and other related topics. Audience: Researchers and academies working in optimization, computer modeling, operations research and financial engineering. The book is appropriate as supplementary reading in courses on optimization and financial engineering.
This book presents a study on the novel concept of "event-triggered control of nonlinear systems subject to disturbances", discussing the theory and practical applications. Richly illustrated, it is a valuable resource for researchers, engineers and graduate students in automation engineering who wish to learn the theories, technologies, and applications of event-triggered control of nonlinear systems.
The idea of editing a book on modern software architectures and
tools for CAPE (Computer Aided Process Engineering) came about when
the editors of this volume realized that existing titles relating
to CAPE did not include references to the design and development of
CAPE software.
This research topic was first established in China by Professor Shengzhao Long in 1981, with direct support from one of the greatest modern Chinese scientists, Xuesen Qian. In a letter to Shengzhao Long from October 22nd, 1993, Xuesen Qian wrote: "You have created a very important modern science subject and technology in China!" MMESE primarily focuses on the relationship between Man, Machine and Environment, studying the optimum combination of man-machine-environment systems. In this system, "Man" refers to working people as the subject in the workplace (e.g. operators, decision-makers); "Machine" is the general name for any object controlled by Man (including tools, machinery, computers, systems and technologies), and "Environment" describes the specific working conditions under which Man and Machine interact (e.g. temperature, noise, vibration, hazardous gases etc.). The three goals of optimization are to ensure "Safety, High efficiency and Economy" of man-machine-environment systems. These proceedings are an academic showcase of the best papers selected from more than 400 submissions, introducing readers to the top research topics and the latest developmental trends in the theory and application of MMESE. These proceedings are interdisciplinary studies on the concepts and methods of physiology, psychology, system engineering, computer science, environment science, management, education, and other related disciplines. Researchers and professionals who study an interdisciplinary subject crossing above disciplines or researchers on MMESE subject will be mainly benefited from these proceedings.
This book presents cutting-edge applications of, and up-to-date research on, ontology engineering techniques in the physical asset integrity domain. Though a survey of state-of-the-art theory and methods on ontology engineering, the authors emphasize essential topics including data integration modeling, knowledge representation, and semantic interpretation. The book also reflects novel topics dealing with the advanced problems of physical asset integrity applications such as heterogeneity, data inconsistency, and interoperability existing in design and utilization. With a distinctive focus on applications relevant in heavy industry, Ontology Modeling in Physical Asset Integrity Management is ideal for practicing industrial and mechanical engineers working in the field, as well as researchers and graduate concerned with ontology engineering in physical systems life cycles.
Exploring the concept of quality management from a new point of view, this book presents a holistic model of how consumers judge the quality of products. It links consumer perceptions of quality to the design and delivery of the final product, and presents models and methods for improving the quality of these products and services. It offers readers an improved understanding of how and why the design process must consider how the consumer will perceive a product or service. In order to facilitate the presentation and understanding of these concepts, illustrations and case examples are also provided throughout the book. This book provides an invaluable resource for managers, designers, manufacturers, professional practitioners and academics interested in quality management. It also offers a useful supplementary text for marketing and quality management courses.
Units or systems can fail when they suffer shock and when the total damage exceeds a failure level. Shock and damage models describe catastrophic and degradation failures of units or systems and these reliability models are analyzed using the theory of stochastic processes. Shock and Damage Models in Reliability Engineering is the first book to describe the reliability properties and maintenance policies associated with shock and damage models. The author is a leading researcher in this field with over thirty yearsa (TM) experience. The book introduces stochastic processes before surveying current developments in shock and damage models. The reliability quantities of each model are explained and their optimization problems are discussed analytically. The maintenance policies of these models are explored in terms of maintenance theory and reliability theory and practical applications of all of these models are revealed with case studies. Reliability engineers and managers engaged in maintenance work will find Shock and Damage Models in Reliability Engineering a comprehensive reference. As a detailed treatment of this specific area, this book will also be of interest to advanced undergraduate and graduate students and researchers who are studying reliability engineering and applied stochastic processes.
Process planning determines how a product is to be manufactured and is therefore a key element in the manufacturing process. It plays a major part in determining the cost of components and affects all factory activities, company competitiveness, production planning, production efficiency and product quality. It is a crucial link between design and manufacturing. There are several levels of process planning activities. Early in product engineering and development, process planning is responsible for determining the general method of production. The selected general method of production affects the design constraints. In the last stages of design, the designer has to consider ease of manufacturing in order for it to be economic. The part design data is transferred from engineering to manufacturing and process planners develop the detailed work package for manufacturing a part. Dimensions and tolerances are determined for each stage of processing of the workpiece. Process planning determines the sequence of operations and utilization of machine tools. Cutting tools, fixtures, gauges and other accessory tooling are also specified. Feeds, speeds and other parameters of the metal cutting and forming processes are determined.
A cooperative system is defined to be multiple dynamic entities that share information or tasks to accomplish a common, though perhaps not singular, objective. Examples of cooperative control systems might include: robots operating within a manufacturing cell, unmanned aircraft in search and rescue operations or military surveillance and attack missions, arrays of micro satellites that form a distributed large aperture radar, employees operating within an organization, and software agents. The term entity is most often associated with vehicles capable of physical motion such as robots, automobiles, ships, and aircraft, but the definition extends to any entity concept that exhibits a time dependent behavior. Critical to cooperation is communication, which may be accomplished through active message passing or by passive observation. It is assumed that cooperation is being used to accomplish some common purpose that is greater than the purpose of each individual, but we recognize that the individual may have other objectives as well, perhaps due to being a member of other caucuses. This implies that cooperation may assume hierarchical forms as well. The decision-making processes (control) are typically thought to be distributed or decentralized to some degree. For if not, a cooperative system could always be modeled as a single entity. The level of cooperation may be indicated by the amount of information exchanged between entities. Cooperative systems may involve task sharing and can consist of heterogeneous entities. Mixed initiative systems are particularly interesting heterogeneous systems since they are composed of humans and machines. Finally, one is often interested in how cooperative systems perform under noisy or adversary conditions. In December 2000, the Air Force Research Laboratory and the University of Florida successfully hosted the first Workshop on Cooperative Control and Optimization in Gainesville, Florida. This book contains selected refereed papers summarizing the participants' research in control and optimization of cooperative systems. Audience: Faculty, graduate students, and researchers in optimization and control, computer sciences and engineering.
This book sheds light on the development of traditional and advanced optimization methods. Their use in various tradition and non-tradition manufacturing and machining processes for an improved manufacturability is reported. This includes key elements of implementing conventional statistical methods, multi-objective and multi-criteria decision-making methods and evolution of single and multi-target optimization techniques using soft computing to enhance production performance, efficiency and sustainability in manufacturing. The latest research in this area as well as possible avenues of future research are also highlighted.
Covering both the history of mathematics and of philosophy, Descartes's Mathematical Thought reconstructs the intellectual career of Descartes most comprehensively and originally in a global perspective including the history of early modern China and Japan. Especially, it shows what the concept of "mathesis universalis" meant before and during the period of Descartes and how it influenced the young Descartes. In fact, it was the most fundamental mathematical discipline during the seventeenth century, and for Descartes a key notion which may have led to his novel mathematics of algebraic analysis. |
![]() ![]() You may like...
Power Management for Wearable Electronic…
Dima Kilani, Baker Mohammad, …
Hardcover
R1,521
Discovery Miles 15 210
A Complete Guide to Quality in…
John Anthony Considine, Elizabeth Frankish
Hardcover
Rectenna: Wireless Energy Harvesting…
Binod Kumar Kanaujia, Neeta Singh, …
Hardcover
R3,612
Discovery Miles 36 120
New Frontiers in Cryptography - Quantum…
Khaled Salah Mohamed
Hardcover
R3,611
Discovery Miles 36 110
|