Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Biology, life sciences > Biochemistry > Proteins
From small beginnings in the early 1970s, the study of complement
regulatory proteins has grown in the last decade to the point where
it dominates the complement field. This growth has been fueled by
the discovery of new regulators, the cloning of old and new
regulators, the discovery that many of the regulators are
structurally and evolutionarily related to each other and the
development of recombinant forms for use in therapy. There are now
more proteins known to be involved in controlling the complement
system than there are components of the system and the list
continues to grow. The time is ripe for a comprehensive review of
our current knowledge of these intriguing proteins. This book does
just that. The first few chapters discuss the "nuts-and-bolts" of
the complement regulators, describing their structures, functional
roles and modes of action. The roles of the complement regulators
"in vivo" are then described, focusing on the consequences of
deficiency, roles in the reproductive system, interactions with
pathogens and exploitation for therapy. The interesting
developments in defining the complement regulators expressed in
other species are also discussed. The book is written as a
monograph, albeit by two people. The text is as readable as
possible without compromising on scientific accuracy and
completeness. The conversational style very evident in some
sections is deliberate Placing all references in a single
bibliography at the end of the text further improves readability.
The reader will go to the book to discover a specific fact but be
persuaded to read more and derive pleasure from the process. The
authors' enthusiasm for the subject comes over strongly in the
text, and this enthusiasm proves infectious.
This detailed collection explores techniques involved in the main strategies of nanopore sensing, such as translocation, analyte trapping, and interactions with external binding sites. Opening with a section on nanopore design and nanopore production, the book continues with parts devoted to various biological nanopores, nanopore engineering, and their uses in single molecule sensing, computational methods to study intrinsic nanopore behavior, characterizing the specific translocation activity of a vesicle particle through a nanopore, as well as the use of the technique droplet interface bilayer (DIB) in nanopore and membrane biophysical studies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Nanopore Technology: Methods and Protocols, with its focus on nanopore technology and biomolecule characterization, will hold the interest of the biophysicists, biochemists, bioengineers, and molecular biologists who are working toward further understanding this key field of research.
This book details the synthesis and assembly of polypeptide materials across length scales, i.e. proteins and peptides, their precursors, conjugates, and derivatives. A particular emphasis is made on measurement tools and procedures for material characterization, both physicochemical and functional. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Polypeptide Materials: Methods and Protocols serves to reflect the inter-disciplinary nature of molecular biology as well as the importance of developing innovative measurement methods to advance this vital area of research.
How do you keep track of basic information on the proteins you work
with? Where do you find details of their physicochemical
properties, amino acid sequences, and structure? Are you tired of
scanning review articles, primary papers, and databases to locate
that elusive fact?
This book describes the complex structures of heparins and heparan
sulfates (heparinoids) and how they are generated by their
biosynthetic pathways. The book also details the methodologies for
studying these structures and their cellular metabolism.
Heparin-Binding Proteins introduces the general nature of
interactions between heparinoids and proteins, and presents the
role for these structures in their interactions with the proteins
of the hemostatic mechanisms, fibroblasts growth factors,
superoxide dismutase, and lipoproteins.
This volume explores strategies and detailed protocols for the preparation of macromolecular complexes and their characterization in view of structural analysis. The chapters in this book are separated into three parts: Part One focuses on sample preparation, and covers strategies for recombinant expression of multiprotein complexes in prokaryotic and eukaryotic hosts, for genome engineering using the CRISPR/Cas9 system and for production of specific binders such as reformatted antibodies and artificial binding proteins. Part Two looks at the biophysical methods that can provide useful indicators for sample optimization, and often complement structural information obtained with core technologies for structure determination-x-ray crystallography and cryo-electron microscopy-by quantitative solution data. Part Three discusses the characterization of multiprotein complexes in a cellular environment using the latest technologies and in vivo approaches. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Multiprotein Complexes: Methods and Protocols is a valuable resource for structural and molecular biologists who need to prepare multi-components for their applications, and for other scientists working on macromolecular assemblies from other angles that need to know the latest approaches that the field has to offer.
This volume explores the basic issues of "allostery" and "network" that are fundamental to studying this field. Chapters in this book look at how the basic "machine-like" proteins, that are similar to "human machines," need to be organized, architecturally, to relate to different organizational layers. Chapters cover topics such as methodological/computational factors focused on links between allostery and network formalism; the presence of oscillating modes transversing the structure and underlying network wiring of the allosteric process; the "action at distance" by transduction of signals across an organized network structure; and the P53 protein located at the cross-road of cell cycle regulation, genome integrity, and cancer development. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and practical, Allostery: Methods and Protocols is a valuable resource for any scientists and researcher interested in learning more about this developing field.
Neuropeptide Y (NPY) is a ubiquitous and important messenger in the
nervous system, with a wide range of physiological roles. It is
involved in the body energy balance and is one of the most potent
stimuli of food intake known. NPY also acts to regulate central and
peripheral autonomic functions.
This book merges approaches in understanding the function of the light-gated ion channels known as channelrhodopsin together with methods addressing how channelrhodopsins can be used to address biomedical questions on a cellular or organismal level. Since the first molecular identification of channelrhodopsins, a broad range of tools have been created and new approaches developed to both better understand the molecular determinants of channelrhodopsin function as well as to use these and homologous proteins from a variety of species as tools to better understand physiological processes, which this volume addresses. Additionally, channelrhodopsins have become instrumental as a potential treatment for disease states. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Channelrhodopsin: Methods and Protocols provides a resource for those interested in honing their current expertise in this vital area of study as well as potentially branching out into new directions.
The design and production of novel peptides and proteins occupy
pivotal positions in science and technology and will continue to do
so in the 21st century. Protein Engineering and Design outlines the
rapid advances in computer-based modeling, protein engineering, and
methods needed for protein and peptide preparation and
characterization. This indispensable reference lays the groundwork
for understanding this multidisciplinary activity while providing
an introduction for researchers and students to the field of
protein design.
Techniques in Protein Chemistry VII, a valuable bench-top reference
tool for protein chemists, features the most up-to-date advances in
protein methodologies.
This volume provides the most current methods to study RNA remodeling proteins. Chapters detail methods, ranging from basic to complex, procedures to identify RNA remodeling proteins and their cofactors, physiological RNA targets and biological functions, and complex molecular mechanisms of action using purified components. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, application details for both the expert and non-expert reader, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, RNA Remodeling Proteins: Methods and Protocols, Second Edition aims to ensure successful results in the further study of this vital field.
This second edition focuses on various techniques to investigate aspects of the TNF Superfamily members in health and disease. Chapters detail protocols on the signaling process of TNF family members, technical examples to investigating the role of TNF family members in physiopathologies, modulation of TNF signaling by pathogens, experimental applications of TNF-reporter mice, methodologies for various assays of TNF family members and the production of recombinant molecules. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and accessible, The TNF Superfamily: Methods and Applications, Second Edition serves to aid researchers investigating this key family of proteins.
In recent years, research has shown the importance of peptides in
neuroscience, immunology, and cell biology. Active research
programs worldwide are now engaged in developing peptide-based
drugs and vaccines using modification of natural peptides and
proteins, design of artificial peptides and peptide mimetics, and
screening of peptide and phage libraries.
This thorough book aims to present the methods that have enabled the success of peptides and proteins in a wide variety of applications. It opens with a section on chemical tools applied to the production or engineering of peptides and proteins, and concludes with a collection of chapters on biological approaches used to engineer structure and function in peptides and proteins. As a book in the Springer Protocols Handbooks series, chapters include the kind of detailed descriptions and tips necessary for successful results in practice. Authoritative and practical, Peptide and Protein Engineering: From Concepts to Biotechnological Applications will be of great use to scientists in academia and industry seeking a better understanding of the emerging principles and methodologies in peptide and protein engineering.
This second edition presents an up-to-date chapters describing the most relevant and novel techniques employed to study the opioid receptors. Chapters detail transcriptional and post-transcriptional analysis, cellular detection of opioid receptors, analysis of signaling events modulated by opioid receptors, model systems to studying opioid receptor-mediated functions, and behavioral effects mediated by opioid receptors. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Opioid Receptors: Methods and Protocols, Second Edition aims to ensure successful results in the further study of this vital field.
The authoritative guide to analyzing protein interactions by mass
spectrometry
The Protein Reviews series serves as a publication vehicle for reviews that focus on crucial contemporary and vital aspects of protein structure, function, evolution and genetics. Volume 20, Purinergic Receptors, has ten chapters. The first five chapters deal with various aspects of membrane binding. The first chapter focuses on the phox-homology (PX) domain, which is a phosphoinositide-binding domain conserved in all eukaryotes and present in forty-nine human proteins. The next chapter deals with the modeling of PH domains/phosphoinositides interactions. This is followed by a chapter on BAR domain proteins regulate Rho GTPase signaling. The BAR (Bin-Amphiphysin-Rvs) domain is a membrane lipid binding domain present in a wide variety of proteins, often proteins with a role in Rho-regulated signaling pathways. The fourth article presents AP180 N-terminal homology (ANTH) and Epsin N-terminal homology (ENTH) domains and discusses their physiological functions and involvement in disease. The fifth article reviews the polyphosphoinositide-binding domains and presents insights from peripheral membrane and lipid-transfer proteins. This is followed by a chapter on the physiological functions of phosphoinositide-modifying enzymes and their interacting proteins in Arabidopsis, then by a chapter on the molecular mechanisms of Vaspin action in various tissues such as adipose tissue, skin, bone, blood vessels, and the brain. The eighth chapter deals with exceptionally selective substrate targeting by the metalloprotease anthrax lethal factor followed by an article on Salmonella, E. coli, and Citrobacter type III secretion system effector proteins that alter host innate immunity. The last chapter presents New techniques to study intracellular receptors in living cells, with insights into RIG-I-like receptor signaling. Volume 20 is intended for research scientists, clinicians, physicians and graduate students in the fields of biochemistry, cell biology, molecular biology, immunology and genetics.
Protein engineering is the rational modification or redesign of proteins using genetic engineering. Thus, it is now possible to modify enzyme specificities, remodel antibodies, and redesign many multi-domain proteins for therapeutic purposes. While the procedures for the introduction of mutations have become routine, predicting and understanding the effects of these mutations can be complicated. This volume provides a comprehensive guide to the methods used at every stage of the engineering process, from the choice of mutation strategy, through protein stability studies, to critical evaluations of mammalian, yeast, and bacterial host expression systems. Protein Engineering: A Practical Approach is the first practical guide to this fascinating mixture of molecular biology, protein structure analysis, computation, and biochemistry. It combines a thorough theoretical foundation with detailed protocols and will be invaluable to all research workers in the area, from graduate students to senior investigators.
This book presents pioneering findings on the characterization of cellular regulation and function for three recently identified protein posttranslational modifications (PTMs): lysine malonylation (Kmal), glutarylation (Kglu) and crotonylation (Kcr). It addresses three main topics: (i) Detecting Kmal substrates using a chemical reporter, which provides important information regarding the complex cellular networks modulated by Kmal; (ii) Identifying Kglu as a new histone PTM and assessing the direct impact of histone Kglu on chromatin structure and dynamics; and (iii) Revealing Sirt3's value as a regulating enzyme for histone Kcr dynamics and gene transcription, which opens new avenues for examining the physiological significance of histone Kcr. Taken together, these studies provide information critical to understanding how these protein PTMs are associated with various human diseases, and to identifying therapeutic targets for the dysregulation of these novel protein markers in various human diseases.
This text concerns the computer-based design and modelling, computational approaches and instrumental methods for elucidating molecular mechanisms of protein folding. Ligand-acceptor interactions are included in volumes 202 and 203 as are genetic and chemical methods for the production of functional molecules including antibodies and antigens, enzymes, receptors, nucleic acids and polysaccharides and drugs.
This book provides a compendium of state-of-the-art methods for the labeling, detection, and purification of RNA and RNA-protein complexes and thereby constitutes an important toolbox for researchers interested in understanding the complex roles of RNA molecules in development, signaling, and disease. Beginning with a section on in situ detection of RNA molecules using FISH techniques, the volume continues with parts exploring in vivo imaging of RNA transport and localization, imaging and analysis of RNA uptake and transport between cells, identification and analysis of RNA-binding proteins, guide RNAs in genome editing, as well as other specific analytical techniques. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, RNA Tagging: Methods and Protocols serves as a vital reference for researchers looking to further the increasingly important research in RNA biology.
Aging is an inevitable part of life and is becoming a worldwide social, economic and health problem. This is mainly due to the fact that the increasing proportion of individuals in the advanced age category have a higher probability of developing age-related disorders, such as type II diabetes mellitus, cardiovascular disorders, sarcopenia, and neurodegenerative conditions. New therapeutic approaches are still needed to decrease or slow the effects of such diseases. Advances in -omic technologies, such as genomics, transcriptomics, proteomics and metabolomics, have significantly advanced our understanding of disease in multiple medical areas, as the analysis of multiple molecular networks has simultaneously provided a more integrated view of disease pathways. It is hoped that emerging hits from these analyses might be prioritized for further screening as potential novel drug targets for increasing the human healthspan in line with the lifespan. In turn, this will lead to new therapeutic strategies as well as drug development projects by the pharmaceutical industry. This book presents a series of reviews describing studies that have resulted in identification of new potential drug targets for age-related disorders. Much of this information has come from -omic comparisons of healthy and disease states or from testing the effects of new therapeutic approaches. Authored by experts from around the globe, each chapter is presented in the context of specific chronic diseases or therapeutic strategies. This book is designed for researchers in the areas of aging and chronic disease, as well as clinical scientists, physicians and stakeholders in major drug companies.
The edition details methods to study intrinsically disordered proteins (IDPs) including recent topics such as extremely high-affinity disordered complexes, kinetics that evade established concepts, liquid-liquid phase separation, and novel disorder-driven allosteric mechanisms. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Intrinsically Disordered Proteins: Methods and Protocols aims to help scientists with different backgrounds to further their investigations into these fascinating and dynamic molecules. Chapter 24 is available open access under a CC BY 4.0 license via link.springer.com. Chapters "40 and 42 " are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book includes a series of reviews on general aspects of biomarker use in the study of psychiatric and neurodegenerative diseases and the development of medications involved in their treatment. It describes the pros and cons of the various approaches and covers the successes and failures in this research field. It is only by a thorough understanding of the shortcomings that progress can be made. The overall goal is to facilitate the understanding and treatment of these disorders, by providing a viable mechanism of catching up with other areas of modern medicine, such as diabetes and heart disease. Finally, it is anticipated that the development and application of valid biomarker tests and the leveraging of novel drug targets will help the fields of psychiatry on neurodegenerative disorders move into the area of personalized medicine where the right patients can receive the right medication at the right time for the best possible outcome. |
You may like...
RNA Metabolism and Gene Expression in…
Beatrice Clouet-d'Orval
Hardcover
R4,316
Discovery Miles 43 160
Protein-Protein Interaction Assays
Mahmood-ur-Rahman Ansari
Hardcover
Collagen - Methods and Protocols
Irit Sagi, Nikolaos A. Afratis
Hardcover
R4,919
Discovery Miles 49 190
Ubiquitin Proteasome System - Current…
Matthew Summers
Hardcover
Peptide And Protein Engineering For…
Pierre Rousselot-pailley, Olga Iranzo
Hardcover
R3,986
Discovery Miles 39 860
Ubiquitination Governing DNA Repair…
Effrossyni Boutou, Horst-Werner Sturzbecher
Hardcover
|