![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Biochemistry > Proteins
In this Brief, Joe Jeffers uncovers the life and works of two-time Nobel Laureate Frederick Sanger. Following Sanger's early life to retirement, Jeffers describes how this celebrated British biochemist became the first person to determine the amino acid sequence of a protein for which he was awarded the Nobel Prize in 1958. Highlighting Sanger's remarkable career, Jeffers describes Sanger's later change in research direction to investigate deoxyribonucleic acids (DNA), work for which Sanger also received the Nobel Prize jointly with Paul Berg and Walter Gilbert in 1980. Joe Jeffers conducted twelve interviews with Sanger over the period of 1999-2009 and he has also spoken to more than 40 of Sanger's colleagues and family members. This brief provides a rigorous yet concise view of Sanger on a personal and scientific level and is suitable for biochemists, historians or the interested layperson.
Due to the paucity of reviews on this subject, this volume aims to be timely and promote additional basic and translational research on these proteins in reproductive system development and function within the fields of Anatomy, Embryology and Cell Biology. The breadth of the work being conducted within Reproduction is exemplified by the contributors to this series who will provide reviews on: Grp78 roles in female reproduction, small heat shock proteins/co-chaperones as players in uterine smooth muscle function, the role of heat shock proteins in sperm function and maternal contribution to oogenesis and early embryogenesis, heat shock factors and testes development, HSP90 in ovarian biology and pathology, and the role of HSP70 in regulation of autophagy in pregnancy and parturition.
This brief provides a broad overview of protein-engineering research, offering a glimpse of the most common experimental methods. It also presents various computational programs with applications that are widely used in directed evolution, computational and de novo protein design. Further, it sheds light on the advantages and pitfalls of existing methodologies and future perspectives of protein engineering techniques.
Over the past decade, there has been an explosive development of research of intrinsically disordered proteins (IDPs), which are also known as unfolded proteins. Structural biologists now recognize that the functional diversity provided by disordered regions complements the functional repertoire of ordered protein regions. In Intrinsically Disordered Protein Analysis: Methods and Experimental Tools, expert researchers explore the high abundance of IDPs in various organisms, their unique structural features, numerous functions, and crucial associations with different diseases. Volume 2 includes sections on single molecule techniques, methods to assess protein size and shape, analyzing conformational behavior, mass-spectrometry, expression and purification of IDP's. Written in the highly successful Methods in Molecular Biology (TM) series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Thorough and intuitive, Intrinsically Disordered Protein Analysis: Methods and Experimental Tools helps scientists further their investigations of these fascinating and dynamic molecules.
This volume highlights recent developments in flow cytometry, affinity assays, imaging, mass spectrometry, microfluidics and other technologies that enable analysis of proteins at the single cell level. The book also includes chapters covering a suite of biochemical and biophysical methods capable of making an entire gamut of proteomic measurements, including analysis of protein abundance or expression, protein interaction networks, post-translational modifications, translocation and enzymatic activity. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Authoritative and thorough, Single Cell Protein Analysis: Methods and Protocols is useful to researchers and students in biological and biomedical sciences who have an interest in proteomic measurements in cells.
In the post-genomic era, in vitro mutagenesis has emerged as a critically important tool for establishing the functions of components of the proteome. The third edition of In Vitro Mutagenesis Protocols represents a practical toolbox containing protocols vital to advancing our understanding of the connection between nucleotide sequence and sequence function. Fully updated from the previous editions, this volume contains a variety of specialty tools successfully employed to unravel the intricacies of protein-protein interaction, protein structure-function, protein regulation of biological processes, and protein activity, as well as a novel section on mutagenesis methods for unique microbes as a guide to the generalization of mutagenesis strategies for a host of microbial systems. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include brief introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and expert tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, In Vitro Mutagenesis Protocols, Third Edition offers today's researchers a valuable compendium of reliable and powerful techniques with which to illuminate the proteome and its rich web of biological implications.
During the past decade as the data on gene sequences and expression patterns rapidly accumulated, cell-free protein synthesis technology has also experienced a revolution, becoming a powerful tool for the preparation of proteins for their functional and structural analysis. In Cell-Free Protein Production: Methods and Protocols, experts in the field contribute detailed techniques, the uses of which expand deep into the studies of biochemistry, molecular biology, and biotechnology. Beginning briefly with basic methods and historical aspects, the book continues with thorough coverage of protein preparation methods, the preparation of proteins that are generally difficult to prepare in their functional forms, applications of the cell-free technologies to protein engineering, as well as some methods that are expected to constitute a part of future technologies. Written in the highly successful Methods in Molecular Biology (TM) series format, the chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Cell-Free Protein Production: Methods and Protocols aims to help researchers continue the growth of the vital exploration of cell-free sciences and technologies in order to better understand the dynamic lives of cells.
Modification of target protein properties by reversible phosphorylation events has been found to be one of the most prominent cellular control processes in all organisms. Recent advances in the areas of molecular biology and biochemistry are presenting new possibilities for reaching an unprecedented depth and a proteome-wide understanding of phosphorylation processes in plants as well as in other species. The major goal of Plant Kinases: Methods and Protocols is to provide the experimentalist with a detailed account of the practical steps necessary for successfully carrying out each protocol in his or her own laboratory. Plant protein kinases specifically addressed in this volume are members of the plant MAP kinase cascade, cyclin- and Calcium-dependent protein kinases, and plant sensor and receptor kinases. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Plant Kinases: Methods and Protocols will prove a useful laboratory companion to both novice and seasoned researchers by facilitating the practical work that will lead them to new and exciting insights in this dynamic field.
This book is intended for scientifc researchers, clinical laboratorians, clinical and translational scientists, and others interested in proteomics and biomarker discovery. Urine is one of the most easily accessible biological samples, and it provides a treasure trove of molecules important in clinical diagnostics. In this book, we review briefly the classical urine tests that are performed in the clinical laboratory and then delve into the state-of-the-art methods for proteomic analysis using urine specimens. The most recent advances are discussed with regard to sample preparation, data analysis, and fnally methods and applications. A multitude of examples are provided including procedural details for the identifcation and characterization of urine biomarkers that hold potential for the diagnosis and treatment of many different disease conditions. The text is arranged so as to read systematically: introduction, sample preparation methods, applications, and data analysis. However, it does not necessarily require the reader to read it from start to fnish. Each chapter is organized such that it can be read individually without requiring knowledge from other chapters. I would like to thank the many individuals who made this book possible. These include the many authors who contributed to each of the individual chapters, the corresponding authors who took responsibility in providing the complete and fnished versions solicited for the peer review process, and the many scientifc reviewers who provided their valuable input and guidance.
The multidisciplinary science of chemical proteomics studies how small molecules of synthetic or natural origin bind to proteins and modulate their function. In Chemical Proteomics: Methods and Protocols, expert researchers in the field provide key techniques to investigate chemical proteomics focusing on analytical strategies, how probes are generated, techniques for the discovery of small molecule targets and the probing of target function, and small molecule ligand and drug discovery. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Chemical Proteomics : Methods and Protocols seeks to provide methodologies that will contribute to a wider application of chemical proteomics methods in biochemical and cell biological laboratories.
Through the rapid development of proteomics methods and technologies, an enormous amount of data was created, leading to a wide-spread rethinking of strategy design and data interpretation. In Data Mining in Proteomics: From Standards to Applications, experts in the field present these new insights within the proteomics community, taking the historical evolution as well as the most important international standardization projects into account. Along with basic and sophisticated overviews of proteomics technologies, standard data formats, and databases, the volume features chapters on data interpretation strategies including statistics, spectra interpretation, and analysis environments as well as specialized tasks such as data annotation, peak picking, phosphoproteomics, spectrum libraries, LC/MS imaging, and splice isoforms. As a part of the highly successful Methods in Molecular Biology (TM) series, this work provides the kind of detailed description and implementation advice that is crucial for getting optimal results. Authoritative and cutting-edge, Data Mining in Proteomics: From Standards to Applications is a well-balanced compendium for beginners and experts, offering a broad scope of data mining topics but always focusing on the current state-of-the-art and beyond.
Carbohydrate microarrays emerged as a key technology for the deciphering of the glycospace by providing a multiplex technology where tens to hundreds of carbohydrates/protein interactions can be probed in parallel. Carbohydrate Microarrays: Methods and Protocols aims to give the reader the theoretical and experimental clues necessary for the fabrication and implementation of carbohydrate microarrays. This requires three essential steps: 1) to obtain the carbohydrate probes (monosacharides, oligosacchrides, polysacchairdes, glycoconjugates or glycoclusters), 2) to immobilize these probes, and 3) to implement the protocols for biological/biochemical interaction with the desired target. This volume gives an overview of carbohydrate microarray and carbohydrate chemistry and illustrates different detection techniques and their applications. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Carbohydrate Microarrays: Methods and Protocols compiles a catalogue of protocols on carbohydrate microarrays to span the needs of researchers around the globe.
Protein modifications and changes made to them, as well as the quantities of expressed proteins, can define the various functional stages of the cell. Accordingly, perturbations can lead to various diseases and disorders. As a result, it has become paramount to be able to detect and monitor post-translational modifications and to measure the abundance of proteins within the cell with extreme sensitivity. While protein identification is an almost routine requirement nowadays, reliable techniques for quantifying unmodified proteins (including those that escape detection under standard conditions, such as protein isoforms and membrane proteins) is not routine. Quantitative Methods in Proteomics gives a detailed survey of topics and methods on the principles underlying modern protein analysis, from statistical issues when planning proteomics experiments, to gel-based and mass spectrometry-based applications. The quantification of post-translational modifications is also addressed, followed by the "hot" topics of software and data analysis, as well as various overview chapters which provide a comprehensive overview of existing methods in quantitative proteomics. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Quantitative Methods in Proteomics serves as a comprehensive and competent overview of the important and still growing field of quantitative proteomics.
The ubiquitin-proteasome system (UPS) and ubiquitin-related modifiers are not only involved in cellular protein quality control but also in the regulation of many fundamental cellular processes/pathways as well as in their disease-relevant aberrations. Ubiquitin Family Modifiers and Proteasome: Reviews and Protocols presents both novel developments in UPS research and important methods related to the main recent advances in the field of ubiquitin family modifiers. Divided into five convenient sections, this volume focuses on the enzymology and substrate identification of ubiquitin family modifiers, the recognition and chain formation of these modifiers, the analysis of proteasome biogenesis and function, protein quality control, and finally the use of small molecules and strategies to study or manipulate the function of the UPS and of ubiquitin family modifiers, respectively. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Ubiquitin Family Modifiers and Proteasome: Reviews and Protocols will be of great use to investigators and students engaged in both basic and applied research in life sciences.
Membrane proteins, representing nearly 40% of all proteins, are key components of cells involved in many cellular processes, yet only a small number of their structures have been determined. Membrane Protein Structure Determination: Methods and Protocols presents many detailed techniques for membrane protein structure determination used today by bringing together contributions from top experts in the field. Divided into five convenient sections, the book covers various strategies to purify membrane proteins, approaches to get three dimensional crystals and solve the structure by x-ray diffraction, possibilities to gain structural information for a membrane protein using electron microscopy observations, recent advances in nuclear magnetic resonance (NMR), and molecular modelling strategies that can be used either to get membrane protein structures or to move from atomic structure to a dynamic understanding of a molecular functioning mechanism. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and easy to use, Membrane Protein Structure Determination: Methods and Protocols serves as an ideal reference for scientists seeking to further our knowledge of these vital and versatile proteins as well as our overall understanding of the complicated world of cell biology.
Transcriptional regulation controls the basic processes of life. Its complex, dynamic, and hierarchical networks control the momentary availability of messenger RNAs for protein synthesis. Transcriptional regulation is key to cell division, development, tissue differen- ation, and cancer as discussed in Chapters 1 and 2. We have witnessed rapid, major developments at the intersection of computational biology, experimental technology, and statistics. A decade ago, researches were struggling with notoriously challenging predictions of isolated binding sites from low-throughput experiments. Now we can accurately predict cis-regulatory modules, conserved cl- ters of binding sites (Chapters 13 and 15), partly based on high-throughput ch- matin immunoprecipitation experiments in which tens of millions of DNA segments are sequenced by massively parallel, next-generation sequencers (ChIP-seq, Chapters 9, 10, and 11). These spectacular developments have allowed for the genome-wide mappings of tens of thousands of transcription factor binding sites in yeast, bacteria, mammals, insects, worms, and plants. Please also note the no less spectacular failures in many laboratories around the world.
Signal transduction is the fundamental mechanism for regulation of cellular activities by environmental cues and regulatory signals, and is particularly important for plants, whose survival requires proper physiological and developmental responses to the environmental changes. Much progress has been made recently in the plant signal transduction research field thanks to the development of diverse techniques which are covered in Plant Signalling Networks: Methods and Protocols. These include advanced research methods such as proteomics and mass spectrometry methods for studying protein modification, biochemical and cell biological tools for studying protein-protein interactions, genomic techniques for dissecting protein-DNA interaction and transcription networks, and computation methods that integrate molecular network into plant developmental processes. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Plant Signalling Networks: Methods and Protocols presents well-honed methodologies for a wide range of research approaches including genetics, proteomics, biochemical, cell biological, and computational approaches, and seeks to serve both professionals and novices with a comprehensive understanding of complex signaling networks in plants.
Protein microarrays have been used for a wide variety of important tasks, such as identifying protein-protein interactions, discovering disease biomarkers, identifying DNA-binding specificity by protein variants, and for characterization of the humoral immune response. In Protein Microarray for Disease Analysis: Methods and Protocols, expert researchers provide concise descriptions of the methodologies currently used to fabricate microarrays for the comprehensive analysis of proteins or responses to proteins that can be used to dissect human disease. These methodologies are the toolbox for revolutionizing drug development and cell-level biochemical understanding of human disease processes. Beginning with a section on protein-detecting analytical microarrays, the volume continues with sections covering antigen microarrays for immunoprofiling, protein function microarrays, the validation of candidate targets, proteomic libraries, as well as signal detection strategies and data analysis techniques. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Practical and cutting-edge, Protein Microarray for Disease Analysis: Methods and Protocols serves as a solid framework to aid scientists in understanding how protein microarray technology is presently developing and how it can be applied to transform our analysis of human disease.
Protein analysis is increasingly becoming a cornerstone in deciphering the molecular mechanisms of life. Proteomics, the large-scale and high-sensitivity analysis of proteins, is already pivotal to the new life sciences such as Systems Biology and Systems Medicine. Proteomics, however, relies heavily on the past and future advances of protein purification and analysis methods. DIGE, being able to quantify proteins in their intact form, is one of a few methods that can facilitate this type of analysis and still provide the protein isoforms in an MS-compatible state for further identification and characterization with high analytical sensitivity. Differential Gel Electrophoresis: Methods and Protocols introduces the concept of DIGE and its advantages in quantitative protein analysis. It provides detailed protocols and important notes on the practical aspects of DIGE with both generic and specific applications in the various areas of Quantitative Proteomics. Divided into four concise sections, this detailed volume opens with the basics of DIGE, the technique and its practical details with a focus on the planning of a DIGE experiment and its data analysis. The next section introduces various DIGE methods from those employed by scientists world-wide to more novel methods, providing a glance at what is on the horizon in the DIGE world. The volume closes with an overview of the wide range of DIGE applications from Clinical Proteomics to Animal, Plant, and Microbial Proteomics applications. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Differential Gel Electrophoresis: Methods and Protocols can be used by novices with some background in biochemistry or molecular biology as well as by experts in Proteomics who would like to deepen their understanding of DIGE and its employment in many hyphenations and application areas. With its many protocols, applications, and methodological variants, it is also a unique reference for all who seek fundamental details on the working principle of DIGE and ideas for possible future uses of DIGE in novel analytical approaches.
The liver is responsible for a wide range of critical functions essential to life, and is composed of several different cell types. In Liver Proteomics: Methods and Protocols, expert researchers in the field detail many of the methods that are used to study the live. These methods include the most up-to-date strategies being used to characterize the liver proteome at the global, cellular, subcellular, post translational and functional level.Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Liver Proteomics: Methods and Protocols seeks to aid scientists in the further study of this crucially important organ.
Membrane proteins play key roles in numerous cellular processes, in particular mediating cell-to-cell communication and signaling events that lead to a multitude of biological effects. Membrane proteins have also been implicated in many critical diseases such as atherosclerosis, hypertension, diabetes and cancer. In Membrane Protein Structure Predictions Methods: Methods and Protocols, expert researcher in the field detail the advances in both experimental and computational approaches of the structure, dynamics and interactions of membrane proteins dividing the volume into two sections. The first section details the procedures used for measurements of structure and dynamics of membrane proteins. While the second section contains a survey of the computational methods that have played a critical role in membrane protein structure prediction as well as in providing atomic level insight into the mechanism of the dynamics of membrane receptors. Written in the highly successful Methods in Molecular Biology (TM) series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Thorough and intuitive, Membrane Protein Structure Predicitons: Methods and Protocols seeks to aid scientists in the further study of membrane protein structure and function.
The genomes of cellular organisms are organized as double-stranded DNA, a structure that must be unwound to provide DNA replication, recombination, and repair machinery access to genomic information. However, DNA unwinding comes with inherent risks to genome stability. To help mediate these risks, bacterial, archael, and eukaryotic cells have evolved protective ssDNA-binding proteins (SSBs) that bind ssDNA with high affinity and specificity. SSBs also aid genome metabolic processes through direct interactions with key proteins in genome maintenance enzymes. Single-Stranded DNA Binding Proteins: Methods and Protocols assembles methods developed for examining the fundamental properties of SSBs and for exploiting the biochemical functions of SSBs for their use as in vitro and in vivo reagents. Clearly and concisely organized, the volume opens with an introduction to the structures and functions of SSBs, followed protocols for studying SSB/DNA complexes, methods for studying SSB/heterologous protein complexes, protocols for interrogating post-translational modifications of SSBs, and concludes with uses of fluorescently-labeled SSBs for in vitro and in vivo studies of genome maintenance processes. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Single-Stranded DNA Binding Proteins: Methods and Protocols provides a rich introduction for investigators who are interested in this fascinating family of DNA-binding proteins.
Transcriptomics and proteomics, studying the profile of the expression of nucleic acids and proteins respectively, are increasingly applied to gain a mechanistic insight into a wide spectrum of investigation, and the use of expression profiling studies for the central nervous system and brain function aids in the understanding of neurodegenerative disorders and tumor development mechanisms. In Expression Profiling in Neuroscience, expert researchers provide a survey of the most commonly used approaches in the field and scan the different ways of studying the central nervous system/brain environment through expression profiling. The first part addresses the gene expression profiling of the brain at a large scale or to a specific cell type such as blood-brain barrier endothelium. Then, the second part describes the protein expression studies and the different technologies applied. Written for the popular Neuromethods series, chapters include corresponding background information, tested laboratory protocols, and step-by-step methods for reproducible laboratory experiments. Detailed and authoritative, Expression Profiling in Neuroscience presents the state-of-the-art techniques necessary to expand research further into this vital area of study.
After the identification of a potential protein drug, the next critical step is the production of sufficient authentic material for testing, characterization, and clinical trials, which, when successful, leads to the need for robust methodologies for large-scale production, purification, characterization, viral inactivation, and continued testing of the final protein product. Building on the valuable first edition, Therapeutic Proteins: Methods and Protocols, Second Edition aims to cover each of these key aspects of protein drug production through the contributions of authors from highly esteemed industrial and academic institutions around the world. Emphasizing the newest developments in the field, this second edition also includes additional emphasis on discovery, including new display and screening methods as well as the design and engineering of new types of therapeutic proteins. There is also discussion of computational and bioinformatics methods, and chapters on safety aspects of therapeutic protein development. Written in the highly successful Methods in Molecular Biology (TM) format, protocol chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Fully updated and practical, Therapeutic Proteins: Methods and Protocols, Second Edition provides an essential resource to all scientists working in the field of therapeutic proteins.
As two relatively new fields of study, proteomics and nanotechnology have developed in parallel with each other to allow an increased precision in the identification of post-translational protein modifications as well as to provide a more automated isolation and detection of rare proteins in both serum and tissues. The Nanoproteomics: Methods and Protocols volume organizes and collects technical advances from leaders in the field to make laboratory protocols more readily available and understandable to those who are attempting to incorporate nanotechnologic techniques into their proteomic research. Conveniently divided into five sections, this detailed volume covers preliminary sample preparation, nanoscale fluidic devices and methods, nanostructured surfaces and nanomaterials, and nanoproteomic techniques to detect and understand protein and proteomic alterations specific to human pathology. Written in the highly successful series entitled Methods in Molecular Biology (TM), these chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step laboratory protocols that are readily reproducible, and tips on troubleshooting and avoiding known pitfalls. Convenient and authoritative, Nanoproteomics: Methods and Protocols offers key procedures that are culled from the laboratories of leaders in the field of nanoproteomics with the aim of helping researchers in their standardization and proliferation of protocols that will lead to a more wide scale adoption and smoother progress in this vital field. |
You may like...
Intermediate Filament Associated…
Katherine L. Wilson, Arnoud Sonnenberg
Hardcover
R4,549
Discovery Miles 45 490
Intermediate Filament Proteins, Volume…
M. Bishr Omary, Ron Liem
Hardcover
R4,572
Discovery Miles 45 720
Guide to Protein Purification, Volume…
Richard R. Burgess, Murray P. Deutscher
Hardcover
R4,563
Discovery Miles 45 630
|