Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Physical chemistry > Quantum & theoretical chemistry
Karl Jug hat dieses Buch fur Chemiestudenten nach dem Diplomvorexamen geschrieben. Es baut auf die Grundvorlesung "Mathematik fur Chemiker" auf. Das Interesse an mathematischen Methoden ist seit Erscheinen der ersten Auflage nicht nur in der Technischen und Theoretischen Chemie wesentlich starker geworden. Der Autor hat deshalb die Darstellung durch anschauliche Beispiele und Ubungsaufgaben erweitert und so das Selbststudium erleichtert. In der zweiten Auflage ist der Integralteil der Vektoranalyse vervollstandigt, und Generatoren in der Gruppentheorie und numerische Losungsmethoden bei Differentialgleichungen sind neu hinzugekommen. Ein umfangreicher Anhang mit Losungen fur die Ubungen erganzt die Darstellung.
Die Massenspektrometrie ist ein wichtiges Werkzeug des Chemikers und Biochemikers. Durch die explosionsartige Entwicklung bei den Geratetechniken und Ionisierungsverfahren sind Studenten wie Praktiker mit einer Be- griffsvielfalt konfrontiert, die Lehrbucher nicht mehr abdecken konnen. Das Buch fullt diese Lucke und gibt einen breit gefacherten, lexikalisch geordneten Uberblick.
Available in paperback for the first time, this book describes the main methods of one- and two-dimensional high-resolution NMR spectroscopy in liquids within the quantum-mechanical formalism of the density matrix. In view of the increasing importance of NMR in chemistry and biochemistry, it is particularly addressed to those scientists who do not have a working knowledge of quantum calculations. From reviews of the hardback edition: `The book fills a gap in the market...' Magnetic Resonance in Chemistry 'Goldman's book is important and timely, written in a thorough, careful manner. It treats a selected number of fundamental two-dimensional NMR experiments at a level appropriate for a general graduate course in two-dimensional NMR spectroscopy. Physics Today
Elementare, gleichzeitig exakte Einfuhrung in das Thema. Gezeigt werden fur technisch wichtige Fragestellungen sowohl strenge als auch Naherungsloesungen, insbesondere erste Abschatzungen auch komplizierter Vorgange. Exemplarisch wird an Beispielen aus verschiedenen Bereichen das breite Anwendungsgebiet verdeutlicht und die UEbertragbarkeit des Vorgehens demonstriert. Tabellen der benoetigten Stoffgroessen erleichtern die direkte Anwendung. Damit wendet sich das Buch gleichzeitig an den Ingenieur in der Praxis.
Acquire knowledge of quantum chemistry concepts, the postulates of quantum mechanics, and the foundations of quantum computing, and execute illustrations made with Python code, Qiskit, and open-source quantum chemistry packages Key Features Be at the forefront of a quest for increased accuracy in chemistry applications and computing Get familiar with some open source quantum chemistry packages to run your own experiments Develop awareness of computational chemistry problems by using postulates of quantum mechanics Book DescriptionExplore quantum chemical concepts and the postulates of quantum mechanics in a modern fashion, with the intent to see how chemistry and computing intertwine. Along the way you'll relate these concepts to quantum information theory and computation. We build a framework of computational tools that lead you through traditional computational methods and straight to the forefront of exciting opportunities. These opportunities will rely on achieving next-generation accuracy by going further than the standard approximations such as beyond Born-Oppenheimer calculations. Discover how leveraging quantum chemistry and computing is a key enabler for overcoming major challenges in the broader chemical industry. The skills that you will learn can be utilized to solve new-age business needs that specifically hinge on quantum chemistry What you will learn Understand mathematical properties of the building blocks of matter Run through the principles of quantum mechanics with illustrations Design quantum gate circuit computations Program in open-source chemistry software packages such as Qiskit (R) Execute state-of-the-art-chemistry calculations and simulations Run companion Jupyter notebooks on the cloud with just a web browser Explain standard approximations in chemical simulations Who this book is forProfessionals interested in chemistry and computer science at the early stages of learning, or interested in a career of quantum computational chemistry and quantum computing, including advanced high school and college students. Helpful to have high school level chemistry, mathematics (algebra), and programming. An introductory level of understanding Python is sufficient to read the code presented to illustrate quantum chemistry and computing
Dieser Band enthAlt die BeitrAge des 3. Workshops "Computer in der Chemie" (16.-18. November 1988 in TA1/4bingen). Das Meeting wurde von der Fachgruppe Chemie-Information der GDCh veranstaltet und enthAlt BeitrAge fA1/4r folgende Gebiete: - Chemometrie - MolekA1/4lmodellierung - Syntheseplanung - ProzeAsteuerung - Design und Aufbau von Datenbanken, z.B. in der Toxikologie - Spektrenbibliotheken - Datenerfassung in der Analytik - RAntgenstrukturanalyse - Simulation elektrochemischer Prozesse
Die Bedeutung der Thermodynamik als Mittel zur Interpretation von Beobachtungen an natOrlichen Vorkommen und an synthetischen Proben aus dem Laboratorium kann nicht hoch genug eingeschatzt werden. Experimentelle Ergebnisse mit ihrem Modell- charakter kennen nur mit Hilfe dieses Wissenschaftszweiges wirklich sinnvoll genutzt werden. Dieser Sachverhalt spiegelt sich auch in den Fachpublikationen wider. Ohne solide Kenntnisse thermodynamischer Zusammenhange kennen sie kaum oder Ober- haupt nicht verstanden werden. Die Studienkommission der Deutschen Mineralogi- schen Gesellschaft hat dieser Tatsache Rechnung getragen und empfahl das Fach Physikalisch-Chemische Mineralogie in das Curriculum fOr den Studiengang der Mine- ralogen aufzunehmen. Dadurch wurde der Bedarf nach einem geeigneten Lehrbuch geweckt. Sieht man sich auf dem BOchermarkt um, so muB man feststellen, daB es zwar englischsprachige, jedoch so gut wie keine deutschsprachigen LehrbOcher gibt, in denen die Thermodynamik speziell fOr eine Anwendung auf den Gebieten der Geo- wissenschaften aufbereitet wird. Ziel des Buches ist es, diese LOcke soweit wie meglich zu schlieBen. Es ist in erster Linie als Wegweiser fOr Studierende der Mineralogie gedacht. DarOberhinaus dOrfte es aber auch interessant sein fOr Geologen, Geophysi- ker und Materialwissenschaftler. Das Buch ist so konzipiert, daB es ohne Vorkenntnisse in Physikalischer Chemie lesbar ist. Damit soli insbesondere auf jene Interessenten ROcksicht genommen werden, die in ihrem Studiengang keine Vorlesungen in Physika- lischer Chemie belegen muBten und erst durch ihre wissenschaftliche Arbeiten den Bedarf nach thermodynamischen Grundkenntnissen verspOrten. Die Auswahl des Stoffes ist durch die spezielle geowissenschaftliche Problematik bestimmt.
Dieses Lehrbuch wendet sich an Studenten der Physik, der Naturwissenschaften oder der Elektrotechnik ab 3. Semester. Die Atomphysik und die dazugehorige Quantenphysik bilden die Grundlage fur viele moderne Gebiete der Physik, der Chemie, Biologie wie auch der Elektrotechnik. Es fuhrt sorgfaltig und leicht verstandlich in die Ergebnisse und Methoden der empirischen Atomphysik ein. Gleichzeitig wird dem Leser das Rustzeug der Quantentheorie vermittelt, wobei die Wechselwirkung zwischen Experiment und Theorie besonders herausgearbeitet wird. Die Autoren haben die neuesten Resultate mit berucksichtigt und behandeln insbesondere auch die fur Grundlagenforschung und Anwendung gleichermassen wichtige Laserphysik und nichtlineare Spektroskopie. Verbesserungen und Erganzungen in der vorliegenden 3. Auflage beziehen sich u.a. auf die Behandlung der relativistischen Klein-Gordon und Dirac-Gleichungen, eine theoretische Ableitung der Lamb-Verschiebung, neue Entwicklungen in der Spektroskopie innerer Schalen, neue Anwendungen der NMR-Spektroskopie, z.B. Tomographie. Ausserdem enthalt diese Auflage eine grosse Anzahl von Ubungsaufgaben einschliesslich der Losungen zur Vertiefung und zum Selbststudium.
1. SYNTHESEPLANUNG ALS ERGEBNIS VON INTUITION, ZUFALLS BEFUNDEN UND BEWUBT LOGISCHER ABLEITUNG . 1 TElL A: GRUNDLAGEN 4 2. ALLGEMEINES 2.1. PLANUNG ALS PROBLEMLOSUNG 4 DER ANALOGIESCHLUB . 5 7 DIE ZWECKRICHTUNG EINER PLANUNG VERSUCHSPLANUNG . 7 OPTIMIERUNGSPROBLEME 8 9 2.2. MOTIVE UND KRITERIEN EINER SYNTHESEPLANUNG . 2.2.1. ALLGEMEINES 9 2.2.2. WICHTIGE PLANUNGSZIELE 10 DER WIRKSTOFF 10 DER FARBSTOFF 10 DAS ZWISCHENPRODUKT UND DAS REAGENZ 10 10 DER KATALYSATOR . DER HILFSSTOFF 11 DER STOFF ALS MEDIUM 11 DER STOFF ALS CHEMISCHER ENERGIESPENDER . 11 DER WERKSTOFF 11 DER STOFF ALS INFORMATION 11 12 DAS VERFAHREN ALS PLANUNGSZIEL . 12 2.3. DIE ROLLE DES COMPUTERS 3. INFORMATION UND DOKUMENTATION 15 3.1. ALLGEMEINES 15 3.2. WIEDERGABEFORMEN VON CHEMISCHER INFORMATION 16 3.2.1. STRUKTURMODELL, STRUKTURFORMEL, TOPOLOGISCHE STRUKTURVERSCHLOSSELUNG 16 3.2.2. DIE CHEMISCHE NOMENKLATUR 19 3.2.3. DIE WISWESSER LINE-NoTATION (WLN) . 19 3.2.4. DER FRAGMENTCODE GREMAS 21 3.2.5. WEITERE FORMEN DER STRUKTURBESCHREIBUNG . 23 3.2.6. THESAURI 23 3.2.7. BESCHREIBUNG VON VERFAHREN UND STOFFSYSTEMEN."
Dieses Buch entstand wahrend eines Versuchs, Studenten der Universitat von Colorado mit einigen Aspekten der Quantenmechanik, Spektroskopie und der Struktur von Atomen und MolekUlen vertraut zu machen. Der Autor ist der Uberzeugung, daB Studenten anderer Gebiete der Chemie gegeniiber Physiko- chemikern lange den Vorteil hatten, nach einem einjahrigen Grundkurs For- schungsliteratur lesen zu konnen. In der physikalischen Chemie war jede adaquate Diskussion von Quantenphanomenen gewohnlich Fortgeschrittenen vorbehalten, und folglich entging vielen Studenten wahrend ihres Grundstudiums die Faszination der Bereiche der physikalischen Chemie, die sich mit Quantenmechanik befassen. AuBerdem benotigten die Studenten, die an der Forschung auf den Gebieten der Quantenmechanik und Molekiilstruktur interessiert waren, ein bis zwei Jahre dazu, sich das notwendige Grundwissen anzueignen. Eine moglichst vollstandige Einfiihrung in Quantenphiinomene wahrend des Grundstudiums ermoglicht einen friiheren Beginn der Forschung. Sie bietet den zusatzlichen Vorteil, daB Studenten wahrend des Hauptstudiums an einem Forschungsprojekt auf diesen Gebieten teilnehmen konnen. Die Behandlung von Quantenproblemen im Grund- kurs der physikalischen Chemie erfordert die Auslassung bestimmter Bereiche der klassischen physikalischen Chemie. Die Diskussion, ob solch ein Vorgehen zu rechtfertigen sei oder nicht, wird sicherlich noch einige Zeit fortdauern. Der Autor vertritt jedoch die Meinung, daB es ein zwingendes Argument fiir die Ein- beziehung von Quantenphanomenen gibt. Jede Diskussion iiber Quantenmechanik erfordert ein extensives neues Vokabular und eine neue Symbolik.
In der Lehrbuchliteratur gibt es schon eine Reihe von elemen taren Einfiihrungen in die Theorie der chemischen Bindung, die den Studenten der Chemie mit diesem Kernstiick des theoretischen Tells seiner Wissenschaft bekannt machen sollen. Die hier vorgelegte Ausarbeitung von V orlesungen, die ich in Frankfurt gehalten habe, ware lediglich eine Parallelerscheinung zu diesen Biichern im Bereich der deutschen Literatur (in der bisher ein Buch mit gleicher Absicht fehlt), wenn sie sich nicht im Aufbau merklich von den mir bekanntenDarstellungen unterscheiden wiirde. Die bekannten Biicher fiihren die unumganglichen Elemente der Quantenphysik in der Regel in korpuskularer Sprache ein. Da bei Verwendung dieser Sprache chemische Bindung erst auf den hoheren Stufen der Theorie verstanden werden kann, verliert del' Leser so meistens den Zusammenhang der Bindungsphanomene mit den im System der Quantentheorie erfaf3ten experimentellen Grundtatsachen aus dem Auge. Da nun auf3erdem bei der iiblichen Beschrankung auf die Diskussion des Einkorperproblems ("mole cular orbitals") gerade diejenigen Teile der Theorie sowieso wieder iiber Bord geworfen werden, deren Einfiihrung zunachst so gro13e Schwierigkeiten gemacht (bzw. unklare Vorstellungen erzeugt) hat, schlen es mir mehr Sinn zu haben, den Weg zur Quantentheorie vom klassischen Feldblld her zu nehmen, die korpuskulare also durch die undulatorische Sprache zu ersetzen. Chemische Bindung ist, so gesehen, ein schon klassisch verstandliches Phanomen, eine Tat sache, deren didaktische Bedeutung bisher nach meiner Meinung unterschatzt worden ist. Denjenigen, die mich durch Kritik unterstiitzt haben, mochte ich auch an dieser Stelle herzlich danken."
As analysis, in terms of detection limits and technological innovation, in chemical and biological fields has developed so computational techniques have advanced enabling greater understanding of the data. Indeed, it is now possible to simulate spectral data to an excellent level of accuracy, allowing chemists and biologists access to robust and reliable analytical methodologies both experimentally and theoretically. This work will serve as a definitive overview of the field of computational simulation as applied to analytical chemistry and biology, drawing on recent advances as well as describing essential, established theory. Computational approaches provide additional depth to biochemical problems, as well as offering alternative explanations to atomic scale phenomena. Highlighting the innovative and wide-ranging breakthroughs made by leaders in computational spectrum prediction and the application of computational methodologies to analytical science, this book is for graduates and postgraduate researchers showing how computational analytical methods have become accessible across disciplines. Contributed chapters originate from a group of internationally-recognised leaders in the field, each applying computational techniques to develop our understanding of and supplement the data obtained from experimental analytical science.
Quantum tunnelling is one of the strangest phenomena in chemistry, where we see the wave nature of atoms acting in "impossible" ways. By letting molecules pass through the kinetic barrier instead of over it, this effect can lead to chemical reactions even close to the absolute zero, to atypical spectroscopic observations, to bizarre selectivity, or to colossal isotopic effects. Quantum mechanical tunnelling observations might be infrequent in chemistry, but it permeates through all its disciplines producing remarkable chemical outcomes. For that reason, the 21st century has seen a great increase in theoretical and experimental findings involving molecular tunnelling effects, as well as in novel techniques that permit their accurate predictions and analysis. Including experimental, computational and theoretical chapters, from the physical and organic to the biochemistry fields, from the applied to the academic arenas, this new book provides a broad and conceptual perspective on tunnelling reactions and how to study them. Quantum Tunnelling in Molecules is the obligatory stop for both the specialist and those new to this world.
London dispersion interactions are responsible for numerous phenomena in physics, chemistry and biology. Recent years have seen the development of new, physically well-founded models, and dispersion-corrected density functional theory (DFT) is now a hot topic of research. This book is an overview of current understanding of the physical origin and modelling of London dispersion forces manifested at an atomic level. It covers a wide range of system, from small intermolecular complexes, to organic molecules and crystalline solids, through to biological macromolecules and nanostructures. In presenting a broad overview of the of the physical foundations of dispersion forces, the book provides theoretical, physical and synthetic chemists, as well as solid-state physicists, with a systematic understanding of the origins and consequences of these ubiquitous interactions. The presentation is designed to be accessible to anyone with intermediate undergraduate mathematics, physics and chemistry.
Ideas of Quantum Chemistry, Volume One: From Quantum Physics to Chemistry shows how quantum mechanics is applied to molecular sciences to provide a theoretical foundation. Organized into digestible sections and written in an accessible style, it answers questions, highlighting the most important conclusions and essential mathematical formulae. Beginning with an introduction to the magic of quantum mechanics, the book goes on to review such key topics as the Schroedinger Equation, exact solutions, and fundamental approximate methods. The crucial concept of molecular shape is then discussed, followed by the motion of nuclei and the orbital model of electronic structure. This updated volume covers the latest developments in the field and can be used either on its own as a detailed introduction to quantum chemistry or in combination with Volume Two to give a complete overview of the field.
This book provides an introduction to many-body methods for applications in quantum chemistry. These methods, originating in field-theory, offer an alternative to conventional quantum-chemical approaches to the treatment of the many-electron problem in molecules. Starting with a general introduction to the atomic and molecular many-electron problem, the book then develops a stringent formalism of field-theoretical many-body theory, culminating in the diagrammatic perturbation expansions of many-body Green's functions or propagators in terms of Feynman diagrams. It also introduces and analyzes practical computational methods, such as the field-tested algebraic-diagrammatic construction (ADC) schemes. The ADC concept can also be established via a wave-function based procedure, referred to as intermediate state representation (ISR), which bridges the gap between propagator and wave-function formulations. Based on the current rapid increase in computer power and the development of efficient computational methods, quantum chemistry has emerged as a potent theoretical tool for treating ever-larger molecules and problems of chemical and physical interest. Offering an introduction to many-body methods, this book appeals to advanced students interested in an alternative approach to the many-electron problem in molecules, and is suitable for any courses dealing with computational methods in quantum chemistry.
There have been significant developments in the use of knowledge-based expert systems in chemistry since the first edition of this book was published in 2009. This new edition has been thoroughly revised and updated to reflect the advances. The underlying theme of the book is still the need for computer systems that work with uncertain or qualitative data to support decision-making based on reasoned judgements. With the continuing evolution of regulations for the assessment of chemical hazards, and changes in thinking about how scientific decisions should be made, that need is ever greater. Knowledge-based expert systems are well established in chemistry, especially in relation to toxicology, and they are used routinely to support regulatory submissions. The effectiveness and continued acceptance of computer prediction depends on our ability to assess the trustworthiness of predictions and the validity of the models on which they are based. Written by a pioneer in the field, this book provides an essential reference for anyone interested in the uses of artificial intelligence for decision making in chemistry.
The prediction of crystal structures from first principles has been one of the grand challenges for computational methods in chemistry and materials science. The goal of being able to reliably predict crystal structures at an atomistic level of detail, given only the chemical composition as input, presents several challenges. A solution to the crystal structure prediction challenge requires advances in several areas of computational chemistry. Theoretical chemists have naturally been drawn to these challenges from an academic perspective, while the development of methods for solving the problem of crystal structure prediction has also been motivated by a growing range of applications where reliable structure prediction is sought and could guide experimentation. Crystal structure predictions have been used to study organic molecules such as polymorphism of pharmaceutical molecules, where changes in crystal form can lead to changes in important physical and chemical properties, which must be strictly controlled in a pharmaceutical product, or inorganic materials where the discovery and computational design of new materials with targeted properties, such as porosity, electronic or mechanical properties are necessary. However, the communities addressing methods and applications in organic and inorganic crystal structure prediction have largely remained separate, due to the different approaches that have been used in these two areas. The community as a whole will benefit from the cross-fertilisation of ideas and methods in this volume, as well as from bringing theoreticians together with interested experimentalists. The volume will appeal to researchers from computational chemistry, informatics, physics (applying solid state electronic structure methods) and materials science in the development of methods. Applications of the methods also cover several fields, including crystallography, crystal engineering, mineralogy and pharmaceutical materials. This volume gathers key researchers representing the full scientific scope of the topic, including the developers of methods and software, those developing the application of the methods and interested experimentalists who may benefit from advances in predictive computational methods. In this volume the topics covered include: Structure searching methods Crystal structure evaluation: calculating relative stabilities and other criteria Applications of crystal structure prediction - organic molecular structures Applications of crystal structure prediction - inorganic and network structures
Self-propelled objects (particles, droplets) are autonomous agents that can convert energy from the environment into motion. These motions include nonlinear behaviour such as oscillations, synchronization, bifurcation, and pattern formation. In recent years, there has been much interest in self-propelled objects for their potential role in mass transport or their use as carriers in confined spaces. An improved understanding of self-organized motion has even allowed researchers to design objects for specific motion. This book gives an overview of the principles of self-propelled motion in chemical objects (particles, droplets) far from their thermodynamic equilibrium, at various spatial scales. Theoretical aspects, the characteristics of the motion and the design procedures of such systems are discussed from the viewpoint of nonlinear dynamics and examples of applications for these nonlinear systems are provided. This book is suitable for researchers and graduate students interested in physical and theoretical chemistry as well as soft matter.
Attosecond science is a new and rapidly developing research area in which molecular dynamics are studied at the timescale of a few attoseconds. Within the past decade, attosecond pump-probe spectroscopy has emerged as a powerful experimental technique that permits electron dynamics to be followed on their natural timescales. With the development of this technology, physical chemists have been able to observe and control molecular dynamics on attosecond timescales. From these observations it has been suggested that attosecond to few-femtosecond timescale charge migration may induce what has been called "post-Born-Oppenheimer dynamics", where the nuclei respond to rapidly time-dependent force fields resulting from transient localization of the electrons. These real-time observations have spurred exciting new advances in the theoretical work to both explain and predict these novel dynamics. This book presents an overview of current theoretical work relevant to attosecond science written by theoreticians who are presently at the forefront of its development. It is a valuable reference work for anyone working in the field of attosecond science as well as those studying the subject.
The focus of this excellent textbook is the topic of molecular reaction dynamics. The chapters are all written by internationally recognised researchers and, from the outset, the contributors are writing with the young scientist in mind. The easy to use, stand-alone, chapters make it of value to students, teachers, and researchers alike. Subjects covered range from the more traditional topics, such as potential energy surfaces, to more advanced and rapidly developing areas, such as femtochemistry and coherent control. The coverage of reaction dynamics is very broad, so many students studying chemical physics will find elements of this text interesting and useful. Tutorials in Molecular Reaction Dynamics includes extensive references to more advanced texts and research papers, and a series of 'Study Boxes' help readers grapple with the more difficult concepts. Each chapter is thoroughly cross-referenced, helping the reader to link concepts from different branches of the subject. Worked problems are included, and each chapter concludes with a selection of problems designed to test understanding of the subjects covered. Supplementary reading material, and worked solutions to the problems, are contained on a secure website.
Over the past few decades, experimental excited state chemistry has moved into the femtochemistry era, where time resolution is short enough to resolve nuclear dynamics. Recently, the time resolution has moved into the attosecond domain, where electronic motion can be resolved as well. Theoretical chemistry is becoming an essential partner in such experimental investigations; not only for the interpretation of the results, but also to suggest new experiments. This book provides an integrated approach. The three main facets of excited-state theoretical chemistry; namely, mechanism, which focuses on the shape of the potential surface along the reaction path, multi-state electronic structure methods, and non-adiabatic dynamics, have been brought together into one volume. Theoretical Chemistry for Electronic Excited States is aimed at both theorists and experimentalists, involved in theoretical chemistry, in electronic structure computations and in molecular dynamics. The book will provide both with the knowledge and understanding to discover ways to work together more closely through its unified approach. |
You may like...
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet
Paperback
Herontdek Jou Selfvertroue - Sewe Stappe…
Rolene Strauss
Paperback
(1)
Wits University At 100 - From Excavation…
Wits Communications
Paperback
Breaking A Rainbow, Building A Nation…
Rekgotsofetse Chikane
Paperback
|