![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > Quantum & theoretical chemistry
This thesis addresses two important and also challenging issues in the research of chemical reaction dynamics of F+H2 system. One is to probe the reaction resonance and the other is to determine the extent of the breakdown of the Born-Oppenheimer approximation (BOA) experimentally. The author introduces a state-of-the-art crossed molecular beam-scattering apparatus using a hydrogen atom Rydberg "tagging" time-of-flight method, and presents thorough state-to-state experimental studies to address the above issues. The author also describes the observation of the Feshbach resonance in the F+H2 reaction, a precise measurement of the differential cross section in the F+HD reaction, and validation of a new accurate potential energy surface with spectroscopic accuracy. Moreover, the author determines the reactivity ratio between the ground state F(2P3/2) and the excited state F*(2P1/2) in the F+D2 reaction, and exploits the breakdown of BOA in the low collision energy.
The subject of this book is the solution of stiff differential equations and of differential-algebraic systems. This second edition contains new material including new numerical tests, recent progress in numerical differential-algebraic equations, and improved FORTRAN codes. From the reviews: "A superb book...Throughout, illuminating graphics, sketches and quotes from papers of researchers in the field add an element of easy informality and motivate the text." --MATHEMATICS TODAY
Self-propelled objects (particles, droplets) are autonomous agents that can convert energy from the environment into motion. These motions include nonlinear behaviour such as oscillations, synchronization, bifurcation, and pattern formation. In recent years, there has been much interest in self-propelled objects for their potential role in mass transport or their use as carriers in confined spaces. An improved understanding of self-organized motion has even allowed researchers to design objects for specific motion. This book gives an overview of the principles of self-propelled motion in chemical objects (particles, droplets) far from their thermodynamic equilibrium, at various spatial scales. Theoretical aspects, the characteristics of the motion and the design procedures of such systems are discussed from the viewpoint of nonlinear dynamics and examples of applications for these nonlinear systems are provided. This book is suitable for researchers and graduate students interested in physical and theoretical chemistry as well as soft matter.
"Quantum Chemistry" is the course material of a European Summer School in Quantum Chemistry, organized by Bj-rn O. Roos. It consists of lectures by outstanding scientists who participate in the education of students and young scientists. The book has a wider appeal as additional reading for University courses. Contents: P.-A. Malmquist: Mathematical Tools in Quantum Chemistry J. Olsen: The Method of Second Quantization P.R. Taylor: Molecular Symmetry and Quantum Chemistry B.O. Roos: The Multiconfigurational (MC) Self-Consistent Field (SCF) Theory P.E.M. Siegbahn: The Configuration Interaction Method T. Helgaker: Optimization of Minima and Saddle Points P.R. Taylor: Accurate Calculations and Calibration U. Wahlgren: Effective Core Potential Method
This definitive reference consolidates current knowledge on dihydrogen bonding, emphasizing its role in organizing interactions in different chemical reactions and molecular aggregations. After an overview, it analyzes the differences between dihydrogen bonds, classical hydrogen bonds, and covalent bonds. It describes dihydrogen bonds as intermediates in intramolecular and intermolecular proton transfer reactions. It describes dihydrogen bonding in the solid-state, the gas phase, and in solution. This is the premier reference for physical chemists, biochemists, biophysicists, and chemical engineers.
This volume introduces readers to some of the latest research applications of physical chemistry. The compilation of this volume was motived by the tremendous increase of useful research work in the field of physical chemistry and related subjects in recent years, and the need for communication between physical chemists, physicists, and biophysicists. This volume reflects the huge breadth and diversity in research and the applications in physical chemistry and physical chemistry techniques, providing case studies that are tailored to particular research interests. It examines the industrial processes for emerging materials, determines practical use under a wide range of conditions, and establishes what is needed to produce a new generation of materials.
The latest volume in this series for organic chemists in industry presents critical discussions of widely used organic reactions or particular phases of a reaction. The material is treated from a preparative viewpoint, with emphasis on limitations, interfering influences, effects of structure and the selection of experimental techniques. The work includes tables that contain all possible examples of the reaction under consideration. Detailed procedures illustrate the significant modifications of each method.
This book deals with a central topic at the interface of chemistry and physics - the understanding of how the transformation of matter takes place at the atomic level. Building on the laws of physics, the book focuses on the theoretical framework for predicting the outcome of chemical reactions. The style is highly systematic with attention to basic concepts and clarity of presentation. Molecular reaction dynamics is about the detailed atomic-level description of chemical reactions. Based on quantum mechanics and statistical mechanics or, as an approximation, classical mechanics, the dynamics of uni- and bi-molecular elementary reactions are described. The book features a detailed presentation of transition-state theory which plays an important role in practice, and a comprehensive discussion of basic theories of reaction dynamics in condensed phases. Examples and end-of-chapter problems are included in order to illustrate the theory and its connection to chemical problems.
The purpose of this book is to convey to the worldwide scientific community the rapid and enthusiastic progress of state-of-the-art quantum chemistry. Quantum chemistry continues to grow with remarkable success particularly due to rapid progress in supercomputers. The usefulness of quantum chemistry is almost limitless. Its application covers not only physical chemistry but also organic and inorganic chemistry, physics, and life sciences. This book deals with all of these topics. Frontiers of Quantum Chemistry is closely related to the symposium of the same name held at Kwansei Gakuin University at Nishinomiya, Japan, in November 2015. The book's contributors, however, include not only invited speakers at the symposium but also many other distinguished scientists from wide areas of quantum chemistry around the world.
Quantum mechanics - central not only to physics, but also to
chemistry, materials science, and other fields - is notoriously
abstract and difficult. Essential Quantum Mechanics is a uniquely
concise and explanatory book that fills the gap between
introductory and advanced courses, between popularizations and
technical treatises.
The first book to cover conceptual quantum chemistry, "Atomic Charges, Bond Properties, and Molecular Energies" deftly explores chemical bonds, their intrinsic energies, and the corresponding dissociation energies, which are relevant in reactivity problems. This unique first-hand, self-contained presentation develops relatively uncomplicated but physically meaningful approaches to molecular properties by providing derivations of all the required formulas from scratch, developed in Professor Fliszar's laboratory. This book is vitally relevant to organic- and biochemists, molecular biologists, materials scientists, and nanoscientists.
The Nature of the Chemical Bond provides a general treatment, essentially nonmathematical, of present (as of 1960) knowledge about the structure of molecules and crystals and the nature of the chemical bond. Among the new features in the third edition are a detailed resonating-valence-bond theory of electron-deficient substances, such as the boranes and ferrocene; a chemical theory of the electronic structure of metals and intermetallic compounds; a discussion of the role of the hydrogen bond in the structures of proteins and nucleic acids; the electroneutrality principle; and other new principles of molecular structure.
Die Theoretische Chemie hat eine zweihundert Jahre alte Tradition in der Chemie. Zu Anfang des 19. Jahrhunderts, als die Chemie sich als eigenstandige Wissenschaft zu etablieren begann, erschienen ein- oder mehrbandige Werke zur Theoretischen Chemie. Das vorliegende Werk basiert auf einem Genealogie-Projekt des Autors, stellt gewissermassen ein Who is who der Theoretischen Chemie dar und beschreibt ihre Entwicklung in Deutschland in den letzten 200 Jahren.
Im Jahr 1937 erschienen die ersten Lehrbucher des damals noch sehr jungen Fachgebiets der Quantenchemie, beide geschrieben von Hans Hellmann (1903-1938). Im Gegensatz zu anderen fruhen Werken zu diesem und nah verwandten Fachgebieten, wie den Buchern von Pauling & Wilson (1935) oder von Eyring, Walter & Kimball (1944), wurden Hellmanns Lehrbucher spater weder nachgedruckt noch neu aufgelegt. Beachtet man seine bedeutenden wissenschaftlichen Leistungen - erwahnt seien hier die Aufklarung der Natur der kovalenten chemischen Bindung (1933), das molekulare Virialtheorem (1933), das quantenmechanische Krafttheorem (1933, 1936/1937, heute als Hellmann-Feynman-Theorem bekannt), die Pseudopotentialmethode (1934) und die spater von Born und Huang erneut und weiter bearbeitete Theorie der diabatischen und adiabatischen Elementarreaktionen (1935) -, so kann dieser Sachverhalt nur unzureichend durch Hellmanns tragisches Schicksal erklart werden. Eine Neuauflage der deutschen Fassung von Hellmanns Lehrbuch ist daher mehr als wunschenswert.
The weak or non-conventional hydrogen bond has been the subject of intense scrutiny over recent years. Now available in paperback, this highly acclaimed book provides a critical assessment on this interesting and occasionally controverstial interaction type.
Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost. This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a self-contained review of ground-state DFT, followed by a detailed and pedagogical treatment of the formal framework of TDDFT. It is explained how excitation energies can be calculated from linear-response TDDFT. Among the more advanced topics are time-dependent current-density-functional theory, orbital functionals, and many-body theory. Many applications are discussed, including molecular excitations, ultrafast and strong-field phenomena, excitons in solids, van der Waals interactions, nanoscale transport, and molecular dynamics.
The second edition of an established graduate text, this book complements the material for a typical advanced graduate course in quantum mechanics by showing how the underlying classical structure is reflected in quantum mechanical interference and tunnelling phenomena, and in the energy and angular momentum distributions of quantum mechanical states in the moderate to large (10-100) quantum number regime. Applications include accurate quantization techniques for a variety of tunnelling and curve-crossing problems and of non-separable bound systems; direct inversion of molecular scattering and spectroscopic data; wavepacket propagation techniques; and the prediction and interpretation of elastic, inelastic and chemically reactive scattering. The main text concentrates less on the mathematical foundations than on the global influence of the classical phase space structures on the quantum mechanical observables. Further mathematical detail is contained in the appendices and worked problem sets are included as an aid to the student.
Die Berechnung der Konstanten der potentiellen Energie der MolekiUe ist eines der Hauptprobleme in der Auswertung der Molekiilspektren ((0:32), S. 28, (0:21), S. 59). Diese Konstanten der potentiellen Energie bzw. Kraftkonstanten der Molekille ermoglichen die Gewinnung von Aussagen iiber jede einzelne Bindung im Molekill, wie dies neben der quantentheoretischen Methode nur noch wenige Methoden fUr vielatomige Molekiile gestatten (7:6). Damit stellt die Kraftkonstantenrechnung ein Hilfsmittel zur Kliirung bindungstheoretischer Strukturfragen chemischer Verbindungen dar. Die experimentellen Grof3en oder Observablen stellen die Schwingungs- frequenzen der Molekiile dar, wie sie mit Ultrarot-und Raman-Spektren-Ge- raten gewonnen werden, die in der sog. Spektralmatrix zusammengefa t wer- den. Weiterhin gehen in die Rechnung noch die Valenzwinkel, die Gleichge- wichtsabstande und die Massen ein, die in der Matrix der kinetischen Energie zusammengefa t werden. Die Berechnung der Matrix der Konstanten der potentiellen Energie erfolgt klassisch nach der Theorie der kleinen Schwingungen, wobei das Molektil als ein mechanisches Punktsystem angesehen wird, dessen klassische Schwingungsfre- quenzen mit den quantentheoretischen Strahlungsfrequenzen flir den Dbergang zwischen Grundzustand und dem ersten angeregten Schwingungszustand des Molekills gleichgesetzt werden kann ((0:27), S. 168). Auch fUr die quantentheoretische Theorie der moglichen EnergiezusUinde von Molekiilen stellen die klassischen Schwingungsfrequenzen die entscheidenden Parameter dar ((0:27), S. 168, (0: 1 06), S. 49).
The chemist's approach to the understanding of matter and its chemical transformations is to take a microscopic view, connecting experimental observation with the properties of the consitutent molecules. Atoms and subatomic particles do not obey the classical laws of mechanics but conform rather to the laws of quantum mechanics. Quantum mechanics is thus of central importance in chemistry. In order to understand the behaviour of molecules and their constituent particles it is necessary to have a thorough grounding in the principles and applications of quantum mechanics.
Understanding the factors which determine the rates and products of elementary reactions is of fundamental importance to chemists. This informative book contains a concise introductory account of the theoretical framework and experimental methods used to elucidate the detailed mechanism of gas phase elementary reactions.
To understand matter and its chemical transformations it is necessary to take a microscopic view, however, at this microscopic level atoms and sub-atomic particles do not obey the classical laws of mechanics that pertain to the everyday macroscopic world. They obey the laws of quantum mechanics. The aim of this book is to explain the fundamentals of quantum mechanics from the point of view of chemistry; to describe areas of chemistry where quantum mechanics is most important; and to show how quantum mechanics is applied to chemical problems. To this end, the book is divided into two parts: the first deals with the foundations of quantum mechanics, and the second is a tool kit for applying quantum mechanics to chemical problems. Although advanced mathematics has been kept to a minimum, the nature of the subject means a certain amount of mathematics is necessary and it is assumed readers will be familiar with a typical first year mathematics course.
Mit diesem Buch erfullt sich der Autor einen langgehegten Wunsch, die Prinzipien und Grundlagen der Wellenmechanik (Quantenmechanik) in der Anwendung auf die Materie und ihre Bausteine einem breiten Leserkreis zuganglich zu machen. Der Autor ist der Meinung, dass nur dieses Wissen und die damit verbundenen Konsequenzen die notwendigen Voraussetzungen dafur sind, sinnvoll und effektiv uber Fragen der menschlichen Existenz und uber menschliches Verhalten nachzudenken. Die Folgerungen aus diesem Wissen beeinflussen daher unmittelbar auch alle Bereiche menschlicher Einsicht und fuhren zu bindenden Lebensprinzipien, die damit letzen Endes aus den wellenmechanischen Erkenntnissen resultieren. Das Buch beginnt fast voraussetzungslos und der Autor spricht den Leser immer wieder unmittelbar in einem lockeren Stil an, um ihm auf diese Weise Mut gebend den Weg in diese letzlich komplexe und ungewohnliche Mikrowelt zu ebnen." |
![]() ![]() You may like...
Understanding Elephants - Guidelines for…
Elephant Specialist Advisory Group
Paperback
Globalizing de Gaulle - International…
Christian Nuenlist, Anna Locher, …
Hardcover
R3,160
Discovery Miles 31 600
|