![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > Quantum & theoretical chemistry
This fresh and original text on quantum mechanics focuses on: the development of numerical methods for obtaining specific results; the presentation of group theory and the systematic use of operators; the introduction of the functional integral and its applications in approximation; the discussion of distant correlations and experimental measurements. Numerous exercises with hints and solutions, examples and applications, and a guide to key references help the student to work with the text.
Structure-Based Drug Design brings together scientists working on different aspects of the subject, demonstrating the necessary collaboration and interdisciplinary approach to this complex area. The focus is on X-ray crystallographic and computational approaches. The general aspects of these approaches are introduced in the first six articles. The remaining articles provide examples of the application of X-ray crystallography, molecular modelling, molecular dynamics, QSAR, database analysis, and homology modelling. The papers cover a wealth of interesting problems in the design of new and enhanced pharmaceuticals.
Providing the quantum-mechanical foundations of chemical bonding, this unique textbook emphasizes key concepts such as superposition, degeneracy of states and the role of the electron spin. An initial, concise and compact presentation of the rudiments of quantum mechanics enables readers to progress through the book with a firm grounding. Experimental examples are included to illustrate how the abstract concepts are manifest in real systems.
This monograph describes and discusses the properties of heterogeneous materials, comparing two fundamental approaches to describing and predicting materials properties. This multidisciplinary book will appeal to applied physicists, materials scientists, chemical and mechanical engineers, chemists, and applied mathematicians.
This is a self-contained advanced review offering step by step derivation of the consistent theoretical picture of hybrid modeling methods and the thorough analysis of the concepts and current practical methods of hybrid modeling based on this theory. The book presents its material in a sequential way paying attention both to the physical soundness of the approximations used and to the mathematical rigor necessary for practical developing of the robust modeling code.
Using the spin-Hamiltonian formalism the magnetic parameters are introduced through the components of the Lambda-tensor involving only the matrix elements of the angular momentum operator. The energy levels for a variety of spins are generated and the modeling of the magnetization, the magnetic susceptibility and the heat capacity is done. Theoretical formulae necessary in performing the energy level calculations for a multi-term system are prepared with the help of the irreducible tensor operator approach. The goal of the programming lies in the fact that the entire relevant matrix elements (electron repulsion, crystal field, spin-orbit interaction, orbital-Zeeman, and spin-Zeeman operators) are evaluated in the basis set of free-atom terms. The modeling of the zero-field splitting is done at three levels of sophistication. The spin-Hamiltonian formalism offers simple formulae for the magnetic parameters by evaluating the matrix elements of the angular momentum operator in the basis set of the crystal-field terms. The magnetic functions for dn complexes are modeled for a wide range of the crystal-field strengths.
Reinvigorated by advances and insights the quantum theory of irreversible processes has recently attracted growing attention. This volume introduces the very basic concepts of semigroup dynamics of open quantum systems and reviews a variety of modern applications. Originally published as Volume 286 (1987) in Lecture in Physics, this volume has been newly typeset, revised and corrected and also expanded to include a review on recent developments.
The analysis of singular perturbed di?erential equations began early in the twentieth century, when approximate solutions were constructed from asy- totic expansions. (Preliminary attempts appear in the nineteenth century - see[vD94].)Thistechniquehas?ourishedsincethemid-1960sanditsprincipal ideas and methods are described in several textbooks; nevertheless, asy- totic expansions may be impossible to construct or may fail to simplify the given problem and then numerical approximations are often the only option. Thesystematicstudyofnumericalmethodsforsingularperturbationpr- lems started somewhat later - in the 1970s. From this time onwards the - search frontier has steadily expanded, but the exposition of new developments in the analysis of these numerical methods has not received its due attention. The ?rst textbook that concentrated on this analysis was [DMS80], which collected various results for ordinary di?erential equations. But after 1980 no further textbook appeared until 1996, when three books were published: Miller et al. [MOS96], which specializes in upwind ?nite di?erence methods on Shishkin meshes, Morton's book [Mor96], which is a general introduction to numerical methods for convection-di? usion problems with an emphasis on the cell-vertex ?nite volume method, and [RST96], the ?rst edition of the present book. Nevertheless many methods and techniques that are important today, especially for partial di?erential equations, were developed after 1996.
In Periodic Nanostructures, the authors demonstrate that structural periodicity in various nanostructures has been proven experimentally. The text covers the coalescence reactions, studied by electronic microscopy, and shows that the nanoworld is continuous, giving rise to zero- (fullerenes), one- (tubules), two-(graphite) and three-(diamond, spongy carbon) dimensional carbon allotropes. The authors explore foam-like carbon structures, which relate to schwarzites, and which represent infinite periodic minimal surfaces of negative curvature. They show that these structures contain polygons (with dimensions larger than hexagons w.r.t. to graphite) that induce this negative curvature. The units of these structures appear as nanotube junctions (produced via an electron beam) that have wide potential molecular electronics applications. Self-assembled supramolecular structures (of various tessellation) and diamond architectures are also proposed. The authors propose that the periodicity of close repeat units of such structures is most evident not only in these formations but also present in all of the carbon allotropes. It is also shown that depending on the lattice tessellation, heteroatom type, and/or doping, metal nanostructures (nanotubes in particular) can display both metallic and semiconductor characteristics. Therefore, their properties can be manipulated by chemical functionalization. The authors therefore suggest that nanostructures have heralded a new generation of nanoscale biological, chemical, and physical devices. The text also provides literature and data on the field of nanostructure periodicity and the authors own results on nanostructure building and energy calculations as well as topological characterization by means of counting polynomials of periodic nanostructures. The aromaticity of various coverings of graphitic structures is also discussed. This book is aimed at scientists working in the field of nanoscience and nanotechnology, Ph.D. and MSc. degree students, and others interested in the amazing nanoarchitectures that could inspire the cities of the future."
Transition metal catalysis belongs to the most important chemical research areas because a ubiquitous number of chemical reactions are catalyzed by transition metal compounds. Many efforts are being made by industry and academia to find new and more efficient catalysts for chemical processes. Transition metals play a prominent role in catalytic research because they have been proven to show an enormous diversity in lowering the activation barrier for chemical reactions. For many years, the search for new catalysts was carried out by trial and error, which was costly and time consuming. The understanding of the mechanism of the catalytic process is often not very advanced because it is difficult to study the elementary steps of the catalysis with experimental techniques. The development of modern quantum chemical methods for calculating possible intermediates and transition states was a breakthrough in gaining an understanding of the reaction pathways of transition metal catalyzed reactions. This volume, organized into eight chapters written by leading scientists in the field, illustrates the progress made during the last decade. The reader will obtain a deep insight into the present state of quantum chemical research in transition metal catalysis.
The discussions and plans on all scienti?c, advisory, and political levels to realize an even larger "European Supercomputer" in Germany, where the hardware costs alone will be hundreds of millions Euro - much more than in the past - are getting closer to realization. As part of the strategy, the three national supercomputing centres HLRS (Stuttgart), NIC/JSC (Julic ] h) and LRZ (Munich) have formed the Gauss Centre for Supercomputing (GCS) as a new virtual organization enabled by an agreement between the Federal Ministry of Education and Research (BMBF) and the state ministries for research of Baden-Wurttem ] berg, Bayern, and Nordrhein-Westfalen. Already today, the GCS provides the most powerful high-performance computing - frastructure in Europe. Through GCS, HLRS participates in the European project PRACE (Partnership for Advances Computing in Europe) and - tends its reach to all European member countries. These activities aligns well with the activities of HLRS in the European HPC infrastructure project DEISA (Distributed European Infrastructure for Supercomputing Appli- tions) and in the European HPC support project HPC-Europa. Beyond that, HLRS and its partners in the GCS have agreed on a common strategy for the installation of the next generation of leading edge HPC hardware over the next ?ve years. The University of Stuttgart and the University of Karlsruhe have furth- more agreed to bundle their competences and resources."
This book presents the state-of-the-art in simulation on supercomputers. Leading researchers present results achieved on systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2006. The reports cover all fields of computational science and engineering ranging from CFD via computational physics and chemistry to computer science with a special emphasis on industrially relevant applications. The book comes with illustrations and tables.
Comprehensive theoretical and experimental analysis of UV-radiation and low energy electron induced phenomena in nucleic acid bases (NABs) and base assemblies are presented in this book. NABs are highly photostable; the absorbed energy is dissipated in the form of ultrafast nonradiative decay. This book highlights the possible mechanisms of these phenomena which is important for all living species and discusses technical challenges in exploration of these processes.
Non-Linear Optical Properties of Matter: From Molecules to Condensed Phases attempts to draw together both theory and application in this field. As such it will be of interest to both experimentalists and theoreticians alike. Divided into two parts, Part 1 is concerned with the theory and computing of non-linear optical (NLO) properties while Part 2 reviews the latest developments in experimentation. Part 1: Surveys the current advances in the computation of the NLO properties of molecules, crystalline solids and nano-particles. It examines the methods employed to compute the properties of both microscopic and macroscopic forms of matter. Part 2: Covers the recent advances on the NLO properties of organometallic compounds, rotaxanes, glasses, Langmuir-Blodget films, gold and silver nano-particles etc. Strategies to develop novel NLO materials are also discussed along with the Hyper-Rayleigh scattering technique.
It is an indisputable fact that computational physics form part of the essential landscape of physical science and physical education. When writing such a book, one is faced with numerous decisions, e. g. : Which topics should be included? What should be assumed about the readers' prior knowledge? How should balance be achieved between numerical theory and physical application? This book is not elementary. The reader should have a background in qu- tum physics and computing. On the other way the topics discussed are not addressed to the specialist. This work bridges hopefully the gap between - vanced students, graduates and researchers looking for computational ideas beyond their fence and the specialist working on a special topic. Many imp- tant topics and applications are not considered in this book. The selection is of course a personal one and by no way exhaustive and the material presented obviously reflects my own interest. What is Computational Physics? During the past two decades computational physics became the third fun- mental physical discipline. Like the 'traditional partners' experimental physics and theoretical physics, computational physics is not restricted to a special area, e. g. , atomic physics or solid state physics. Computational physics is a meth- ical ansatz useful in all subareas and not necessarily restricted to physics. Of course this methods are related to computational aspects, which means nume- cal and algebraic methods, but also the interpretation and visualization of huge amounts of data.
Essentially, Orientations and Rotations treats the mathematical and computational foundations of texture analysis. It contains an extensive and thorough introduction to parameterizations and geometry of the rotation space. Since the notions of orientations and rotations are of primary importance for science and engineering, the book can be useful for a very broad audience using rotations in other fields.
Heterogeneous catalysis is a fascinating and complex subject of utmost importance in the present day. Its immense technological and economical importance and the inherent complexity of the catalytic phenomena have stimulated theoretical and experimental studies by a broad spectrum of scientists, including chemists, physicists, chemical engineers, and material scientists. Computational and theoretical techniques are now having a major impact in this field. This book aims to illustrate and discuss the subject of heterogeneous catalysis and to show the current capabilities of the theoretical and computational methods for studying the various steps (diffusion, adsorption, chemical reaction) of heterogeneous catalytic process involving zeolites, metal oxides, and transition metal surfaces. The book covers: the use of techniques of computational chemistry to simulate zeolites, metallic and bimetallic surfaces, and oxide-supported metals; the impact of simulation methods on the understanding of the diffusion and adsorption of molecules and cations within the pores of zeolites, and also on the adsorption of molecules on metal and metal-oxide surfaces; and the applications of quantum-mechanical methods to the study of the reaction mechanism and pathways of the adsorbed molecules. This book is recommended primarily to scientists and graduate students conducting research in the fields of heterogeneous catalysis and surface science. It will also be valuable to advanced undergraduate students wishing to become acquainted with the latest developments in these exciting fields of research, and to experimentalists seeking theoretical support for interpreting their results.
Explicitly Correlated Wave Functions in Chemistry and Physics is
the first book devoted entirely to explicitly correlated wave
functions and their theory and applications in chemistry and
molecular and atomic physics. Explicitly correlated wave functions
are functions that depend explicitly on interelectronic distance.
This book is an excellent introduction to density functional theory
for electrons. Largely written in review style, it will also serve
as an excellent overview of recent developments.
The book offers new concepts and ideas that broaden reader 's perception of modern science. Internationally established experts present the inspiring new science of complexity, which discovers new general laws covering wide range of science areas. The book offers a broader view on complexity based on the expertise of the related areas of chemistry, biochemistry, biology, ecology, and physics. Contains methodologies for assessing the complexity of systems that can be directly applied to proteomics and genomics, and network analysis in biology, medicine, and ecology.
The gap between introductory level textbooks and highly specialized monographs is filled by this modern textbook. It provides in one comprehensive volume the in-depth theoretical background for molecular modeling and detailed descriptions of the applications in chemistry and related fields like drug design, molecular sciences, biomedical, polymer and materials engineering. Special chapters on basic mathematics and the use of respective software tools are included. Numerous numerical examples, exercises and explanatory illustrations as well as a web site with application tools (http://www.amrita.edu/cen/ccmm) support the students and lecturers.
The aim of this highly original book is to survey a number of chemical compounds that some chemists, theoretical and experimental, find fascinating. This is the first book to feature compounds/classes of compounds of theoretical interest that have been studied theoretically but have defied synthesis. It is hoped that this collection of idiosyncratic molecules will appeal to chemists who find the study of chemical oddities interesting and, on occasion, even rewarding.
This book presents the state-of-the-art in simulation on supercomputers. Leading researchers present results achieved on systems of the Stuttgart High Performance Computing Center in 2007. The reports cover all fields of computational science and engineering, with emphasis on industrially relevant applications. Presenting results for both vector-based and microprocessor-based systems, the book allows comparison between performance levels and usability of various architectures.
This book covers the results obtained in the Tera op Workbench project during a four years period from 2004 to 2008. The Tera op Workbench project is a colla- ration betweenthe High PerformanceComputingCenter Stuttgart (HLRS) and NEC Deutschland GmbH (NEC-HPCE) to support users to achieve their research goals using high performance computing. The Tera op Workbench supports users of the HLRS systems to enable and - cilitate leading edge scienti c research. This is achieved by optimizing their codes and improving the process work ow which results from the integration of diff- ent modules into a "hybrid vector system." The assessment and demonstration of industrial relevance is another goal of the cooperation. The Tera op Workbench project consists of numerous individual codes, grouped together by application area and developed and maintained by researchers or c- mercial organizations. Within the project, several of the codes have shown the ab- ity to reach beyond the TFlop/s threshold of sustained performance. This created the possibility for new science and a deeper understanding of the underlying physics. The papers in this book demonstrate the value of the project for different scienti c areas. |
![]() ![]() You may like...
Frontiers in Molecular Design and…
Rachelle J. Bienstock, Veerabahu Shanmugasundaram, …
Hardcover
R5,029
Discovery Miles 50 290
Mechanochemical Processes in Energetic…
Adam A. L. Michalchuk
Hardcover
R4,449
Discovery Miles 44 490
Pioneers of Quantum Chemistry
E. Thomas Strom, Angela K. Wilson
Hardcover
R5,685
Discovery Miles 56 850
Electron Correlation in Molecules - ab…
Philip E. Hoggan, Telhat Ozdogan
Hardcover
R5,800
Discovery Miles 58 000
|