![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > Quantum & theoretical chemistry
The authors demonstrate that the essential information about order in, and energy levels of physical systems is encapsulated in the second order reduced density matrix. They have discovered an algorithm to obtain a reasonable accurate expression for the 2-matrix of an N-particle state to make nearly all properties of matter which are of interest to chemists and physicists accessible.
André Julg has published several papers concerning the continuity of classical physics and quantum mechanics. He provides a provocative conclusion in this book: the quantum formalism can be effectively interpreted within the framework of classical physics, provided some minor rearrangements are accepted.
The linear Schrodinger equation is central to Quantum Chemistry. It
is presented within the context of relativistic Quantum Mechanics
and analysed both in time-dependent and time-independent forms. The
Riccati equation is used to study the one-dimensional Schrodinger
equation.
For chemists, biochemists, physicists and materials scientists, pressure as an experimental variable represents a tool that provides unique information about the microscopic properties of the materials being studied. In addition to its use as a research tool for investigating the energetics, structure, dynamics and kinetics of molecular transformations of materials, pressure is also being used to modify the properties of materials to preserve or improve their properties. The contributions collected here cover the main areas of high pressure research, including applications in materials science, condensed matter physics, chemistry and biochemistry. In addition, some papers offer more specialised aspects of high pressure studies. The book makes clear the impressive range of fundamental and applied problems that can be studied by high pressure techniques and also points towards a major growth of high pressure science and technology in the near future.
The main subjects are:
As analysis, in terms of detection limits and technological innovation, in chemical and biological fields has developed so computational techniques have advanced enabling greater understanding of the data. Indeed, it is now possible to simulate spectral data to an excellent level of accuracy, allowing chemists and biologists access to robust and reliable analytical methodologies both experimentally and theoretically. This work will serve as a definitive overview of the field of computational simulation as applied to analytical chemistry and biology, drawing on recent advances as well as describing essential, established theory. Computational approaches provide additional depth to biochemical problems, as well as offering alternative explanations to atomic scale phenomena. Highlighting the innovative and wide-ranging breakthroughs made by leaders in computational spectrum prediction and the application of computational methodologies to analytical science, this book is for graduates and postgraduate researchers showing how computational analytical methods have become accessible across disciplines. Contributed chapters originate from a group of internationally-recognised leaders in the field, each applying computational techniques to develop our understanding of and supplement the data obtained from experimental analytical science.
Matrix isolation is a technique used for studying short-lived atoms and molecules at very low temperatures. This book offers detailed practical advice on how to carry out matrix-isolation experiments, and is a unique introduction to the subject. It is an essential practical text that covers a range of topics, from how to build a matrix-isolation laboratory from scratch, to detailed instructions for carrying out experiments.
A number of general-purpose, reasonably accurate and well-tested ab-initio codes for crystals are discussed in this book. The aim is to expand competence of their application in material sciences and solid-state physics. The book addresses particularly readers with a general knowledge in quantum chemistry and intends to give a deeper insight into the special algorithms and computational techniques in ab-initio computer codes for crystals. Three different programs which are available to all interested potential users on request are presented.
This book strives toward an appreciation of the power of quantum chemistry to analyse the deepest roots of the hydrogen bond phenomenon. It offers a systematic and understandable account of decades of such calculations, focusing on the most importance findings. Readers are provided with the tools to understand the original literature, and to perhaps carry out some calculations of their own on systems of interest.
The application of neutron scattering to polymers has been extremely successful during the last two decades. This book presents, for the first time, both the theories and experimental examples which are needed to understand how these techniques can be applied. Now available in paperback for the first time this book is specifically written to introduce the newcomer and non-expert to the experimental techniques and the basic theory necessary to understand the results.
This book covers important new developments of the last five years in the area of cluster chemistry, presenting an excellent view of the successes and shortcomings of both current state-of-the-art theory and experiment. Each chapter, contributed by a leading expert, places heavy emphasis on theory without which the detailed analysis of the spectroscopic and kinetic results would be compromised. The cluster reactions reviewed in this work include electron and proton transfer reactions, hot atom reactions, vibrational predissociation, radical reactions, and ionic reactions. Some of the theories applied throughout the text are product state distribution determinations, state-to-state dynamical information, and access to the transition stage of the reaction. The discussions serve as a benchmark of how far the field has come since the mid 1980's and will be a good update for students and researchers interested in this area of physical chemistry.
The first volume of Lecture Notes in Quantum Chemistry (Lecture Notes in Chemistry 58, Springer Verlag, Berlin 1992) contained a compilation of selected lectures given at the two first European Summer Schools in Quantum Chemistry (ESQC), held in southern Sweden in August 1989 and 1991, respectively. The notes were written by the teachers at the school and covered a large range of topics in ab initio quantum chemistry. After the third summer school (held in 1993) it was decided to put together a second volume with additional material. Important lecture material was excluded in the first volume and has now been added. Such added topics are: integrals and integral derivatives, SCF theory, coupled-cluster theory, relativity in quantum chemistry, and density functional theory. One chapter in the present volume contains the exercise material used at the summer school and in addition solutions to all the exercises. It is the hope of the authors that the two volumes will find good use in the scientific community as textbooks for students, who are interested in learn ing more about modern methodology in molecular quantum chemistry. The books will be used as teaching material in the European Summer Schools in Quantum Chemistry, which are presently planned. Lund in July 1994 Bjorn Roos NOTES ON HARTREE-FOCK THEORY AND RELATED TOPICS JanAlmlof Department of Chemistry University of Minnesota Minneapolis, MN 55455. USA Contents: 1 * Introduction. 2 . The Born-Oppenheimer Approximation. 3. Determinant Wavefunctions and the Pauli Principle. 4. Expectation Values With a Determinant Wavefunction.
Ideas of Quantum Chemistry, Volume One: From Quantum Physics to Chemistry shows how quantum mechanics is applied to molecular sciences to provide a theoretical foundation. Organized into digestible sections and written in an accessible style, it answers questions, highlighting the most important conclusions and essential mathematical formulae. Beginning with an introduction to the magic of quantum mechanics, the book goes on to review such key topics as the Schroedinger Equation, exact solutions, and fundamental approximate methods. The crucial concept of molecular shape is then discussed, followed by the motion of nuclei and the orbital model of electronic structure. This updated volume covers the latest developments in the field and can be used either on its own as a detailed introduction to quantum chemistry or in combination with Volume Two to give a complete overview of the field.
This book provides an introduction to the use of algebraic methods and sym bolic computation for simple quantum systems with applications to large order perturbation theory. It is the first book to integrate Lie algebras, algebraic perturbation theory and symbolic computation in a form suitable for students and researchers in theoretical and computational chemistry and is conveniently divided into two parts. The first part, Chapters 1 to 6, provides a pedagogical introduction to the important Lie algebras so(3), so(2,1), so(4) and so(4,2) needed for the study of simple quantum systems such as the D-dimensional hydrogen atom and harmonic oscillator. This material is suitable for advanced undergraduate and beginning graduate students. Of particular importance is the use of so(2,1) in Chapter 4 as a spectrum generating algebra for several important systems such as the non-relativistic hydrogen atom and the relativistic Klein-Gordon and Dirac equations. This approach provides an interesting and important alternative to the usual textbook approach using series solutions of differential equations."
Chemical bonds, their intrinsic energies in ground-state molecules and the energies required for their actual cleavage are the subject of this book. The theory, modelled after a description of valence electrons in isolated atoms, explains how intrinsic bond energies depend on the amount of electronic charge carried by the bond-forming atoms. It also explains how bond dissociation depends on these charges. While this theory vividly explains thermochemical stability, future research could benefit from a better understanding of bond dissociation: if we learn how the environment of a molecule affects its charges, we also learn how it modifies bond dissociation in that molecule. This essay is aimed at theoretical and physical-organic chemists who are looking for new perspectives to old problems.
The development of computational methods that support human health and environmental risk assessment of engineered nanomaterials (ENMs) has attracted great interest because the application of these methods enables us to fill existing experimental data gaps. However, considering the high degree of complexity and multifunctionality of ENMs, computational methods originally developed for regular chemicals cannot always be applied explicitly in nanotoxicology. This book discusses the current state of the art and future needs in the development of computational modeling techniques for nanotoxicology. It focuses on (i) computational chemistry (quantum mechanics, semi-empirical methods, density functional theory, molecular mechanics, molecular dynamics), (ii) nanochemoinformatic methods (quantitative structure-activity relationship modeling, grouping, read-across), and (iii) nanobioinformatic methods (genomics, transcriptomics, proteomics, metabolomics). It reviews methods of calculating molecular descriptors sufficient to characterize the structure of nanoparticles, specifies recent trends in the validation of computational methods, and discusses ways to cope with the uncertainty of predictions. In addition, it highlights the status quo and further challenges in the application of computational methods in regulation (e.g., REACH, OECD) and in industry for product development and optimization and the future directions for increasing acceptance of computational modeling for nanotoxicology.
Impressive advances have been made in the study of atomic structures, at both the experimental and theoretical levels. And yet, the scarcity of information on atomic energy levels is evident At the same time there exists a need for data, because of the developments in such diverse fields as astrophysics and plasma and laser research, all of them of fundamental importance as well as practical impact. This project of research in atomic structure, consisting of three components (formulation, computer program, and numerical results), constitutes a basic and comprehensive work with a variety of uses. In its most practical application, it will yield a rather accurate prediction of the energy levels of any atomic system, of use per se or in the interpretation and confirmation of experimental results. On the other hand, it will also be of use in the comparative study of the appropriateness of the various levels of approximation and as a point of reference.
Why is quantum theory so difficult to understand? In this book, written for modern undergraduate and postgraduate students of chemistry and physics, the author looks at the continuing debate about the meaning of quantum theory. The historical development of the theory is traced from the turn of the century through to the 1930s and the famous debate between Niels Bohr and Albert Einstein. The book examines in detail the arguments that quantum theory is incomplete, as made by Einstein, Boris Podolsky and Nathan Rosen. The development of Bell's theorem is also discussed, along with crucial experimental tests performed in the early 1980s. Alternative interpretations - pilot waves, quantum gravity, consciousness, and many worlds - are described in the closing chapter.
This work is based on the observation that further major advances in geochemistry, particularly in understanding the rules that govern the ways in which elements come together to form minerals and rocks, will require the application of the theories of quantum mechanics. The book therefore outlines this theoretical background and discusses the models used to describe bonding in geochemical systems. It is the first book to describe and critically review the application of quantum mechanical theories to minerals and geochemical systems. The book consolidates valuable findings from chemistry and materials science as well as mineralogy and geochemistry, and the presentation has relevance to professionals in a wide range of disciplines. Experimental techniques are surveyed, but the emphasis is on applying theoretical tools to various groups of minerals: the oxides, silicates, carbonates, borates, and sulfides. Other topics dealt with in depth include structure, stereochemistry, bond strengths and stabilities of minerals, various physical properties, and the overall geochemical distribution of the elements.
Modern experimental and computational techniques are capable of determining bond lengths and angles with precisions of a few thousandths of an angstrom and a few tenths of a degree. Such precisions are meaningful only if they are coupled with rigorous error analysis and careful evaluation of the physical meaning of the parameters. This book demonstrates the meaning and applicability of accurate structures and their variations following a rigorous exposure of the demands and caveats in their determination. It establishes guidelines for accuracy requirements in answering broadly varying questions in current chemical research. The 21 chapters by internationally recognized authors discuss the following topics: potential energy surfaces; microwave, infrared, and liquid crystal NMR spectroscopies; gas phase electron diffraction; X-ray and neutron crystallography; electron density studies; ab initio molecular orbital methods and molecular mechanics calculations; the use of structural databases; applications to organic inorganic and organometallic chemistry; studies of reaction pathways; effects of substitution and crystal environment on molecular structure.
Supercomputer and Chemistry is the name of a series of seminars, which the Industrieanlagen-Betriebsgesellschaft (IABG), Ottobrunn near Munich, started in 1987. This third meeting stressed the fields of computational science, supercomputing and computer-aided chemistry. Moreover, ~he current situation in the supercomputer market as a whole, particularly in Germany, and the trends to be expected were discussed. The new generation of graphic workstations such as StARDENT have the power of minisupercomputers. Some performance results are pre- sented and comparisons with other machines are made. One of the most exciting prospects for improving the performance of computers is parallel processing. Especially, transputers seem to give unli- mited computing speed, in effect a Crayon your desk. We examine the technology of transputers and their usage in industrial and research projects. The user will have a formidable task in paral- lelizing software. The second part of the seminar addressed the usage of mainframes and supercomputers in the chemical industry. The interplay of ex- periments and computer-aided drug design was highlighted by spea- kers from Sandoz, Boehringer-Ingelheim and Merck. There is still one open question when using numerical methods, i.e. whether all the relevant and important conformations have been obtained. Cer- tainly the computational results have to be checked and verified against experimental results. Furthermore, the benefits, disadvantages and the reduction in costs and time in using supercomputers in pharmaceutical research were discussed.
The book provides a general, broad approach to aspects of perturbation theory. The aim has been to cover all topics of interest, from construction, analysis, and summation of perturbation series to applications. Emphasis is placed on simple methods, as well as clear, intuitive ideas stemming from the physics of systems of interest.
The essential introduction to the understanding of the structure of inorganic solids and materials. This revised and updated 2nd Edition looks at new developments and research results within Structural Inorganic Chemistry in a number of ways, special attention is paid to crystalline solids, elucidation and description of the spatial order of atoms within a chemical compound. Structural principles of inorganic molecules and solids are described through traditional concepts, modern bond-theoretical theories, as well as taking symmetry as a leading principle.
This volume features invited lectures presented in the workshop-cum-symposium on aspects of many-body effects in molecules and extended systems, Calcutta, February 1 - 10, 1988. The organizers invited leading experts to present recent developments of many-body methods as applied to molecules and condensed systems. The panorama portrayed is quite broad, but by no means exhaustive. The emphasis is undoubtedly on a "molecular point of view."
The present volume contains the text of the invited lectures presented at the Symposium on Many Body Methods in Quantum Chemistry, held on the campus of Tel Aviv University in August 1988. The Symposium was a satellite meeting of the Sixth International Congress on Quantum Chemistry held in Jerusalem. The development and application of many-body methods in Quantum chemistry have been on the rise for a number of years. This is therefore a good time for an interim report on the state of the field. It is hoped that such a report is hereby provided, though it may not be complete. The Symposium was held under the auspices of Tel Aviv University, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry. Other sponsors were the Israeli Academy of Sciences and Humanities, and the Israeli Ministry of Science and Development. Many thanks go to all of them. Finally, I would like to thank all the speakers and participants for making the meeting the enjoyable and (I hope) profitable experience it was. Tel Aviv, Israel Uzi Kaldor TESTS AND APPLICATIONS OF COMPLETE MODEL SPACE QUASIDEGENERATE MANY-BODY PERTURBATION THEORY FOR MOLECULES Karl F. Freed The James Franck Institute and Department of Chemistry The University of Chicago, Chicago, DUnois 60637 U.S.A." |
You may like...
Hyperfocus - How To Work Less To Achieve…
Chris Bailey
Paperback
(1)
Female Ambition - How to Reconcile Work…
N Chinchilla, C. Leon
Hardcover
R2,644
Discovery Miles 26 440
One Life - Short Stories
Joanne Hichens, Karina M. Szczurek
Paperback
|