![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > Quantum & theoretical chemistry
The present text is a rational analysis of the concept of the chemical bond by means of the principles of wave mechanics. The discussion of the material has been arranged so as to render its main content comprehensible for readers who may not have had pre"ious training in quantum mechanics. The text comprises three major parts. It begins with an exposition of the fundamental ideas. In this section the principles are reviewed from which de Broglie developed his mechanics; this allows the book to be read by chemistry majors and freshmen alike. However, we believe that it may also be of interest to university-and college teachers who must include certain aspects of quantum chemistry into their courses while being insufficiently familiar with the subject. It may even be of interest to science teachers in secondary schools. Finally, having been a witness to the evolution of these notions for over a quarter of a century, we present certain concepts from a particular point of view which might prove attractive to chemists of all kinds, perhaps even quantum chemists. The second, more technical part summarizes the methods of constructing wave functions that describe the electrons in molecules. This section can only be fully appreciated by those readers who are familiar with some aspects of the algorithms used in quantum mechanics.
Over the last 60 years the increasing knowledge of transition metal chemistry has resulted in an enormous advance of homogeneous catalysis as an essential tool in both academic and industrial fields. Remarkably, phosphorus(III) donor ligands have played an important role in several of the acknowledged catalytic reactions. The positive effects of phosphine ligands in transition metal homogeneous catalysis have contributed largely to the evolution of the field into an indispensable tool in organic synthesis and the industrial production of chemicals. This book aims to address the design and synthesis of a comprehensive compilation of P(III) ligands for homogeneous catalysis. It not only focuses on the well-known traditional ligands that have been explored by catalysis researchers, but also includes promising ligand types that have traditionally been ignored mainly because of their challenging synthesis. Topics covered include ligand effects in homogeneous catalysis and rational catalyst design, P-stereogenic ligands, calixarenes, supramolecular approaches, solid phase synthesis, biological approaches, and solubility and separation. Ligand families covered in this book include phosphine, diphosphine, phosphite, diphosphite, phosphoramidite, phosphonite, phosphinite, phosphole, phosphinine, phosphinidenene, phosphaalkenes, phosphaalkynes, P-chiral ligands, and cage ligands. Each ligand class is accompanied by detailed and reliable synthetic procedures. Often the rate limiting step in the application of ligands in catalysis is the synthesis of the ligands themselves, which can often be very challenging and time consuming. This book will provide helpful advice as to the accessibility of ligands as well as their synthesis, thereby allowing researchers to make a more informed choice. "Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis" is an essential overview of this important class of catalysts for academic and industrial researchers working in catalyst development, organometallic and synthetic chemistry.
Quantum Theory of Chemical Reactivity may be read without reference to the fact that it is actually the third of three volumes of a treatise on quantum chemistry, the science resulting from the implementation of mathematical laws in the realm of molecular populations. The first two volumes of the treatise, 'Fondement de la Chimie Tbeorique' and 'Structure Electrique des Molecules' were, like this third volume, originally published by Gauthier-Villars; Pergamon published the English translations of these two volumes. I am grateful to D. Reidel Publishing Company for translating the third volume of the treatise into English. Readers familiar with English rather than French now have access to the complete series. This treatise is a reflection of the courses I taught at the Sorbonne from 1950 until 1967 to students in their second cycle (3rd and 4th year) and third cycle (5th and 6th year) working towards a doctorate in this particular field. It is based on the reading of over a thousand articles, and is intended for students as well as for physical chemists, and chemists, research workers and engineers taking an interest in quantum chemistry for its own sake or for its application in industry, pharmacology and the life sciences. Reidel's initiative is particularly valuable because in my opinion Quantum Theory of Chemical Reactivity is the most important of the three volumes of the treatise. Doubtless for this reason only the third volume was published in Japanese by Baifukan, thanks to Professors Hayashi and Sohma.
Das Werk gibt eine in sich geschlossene einfuhrende Darstellung der Grundlagen und Methoden zur theoretischen Beschreibung molekularer Strukturen und Prozesse sowie ihrer Anwendung auf Probleme der Chemie. Neben den traditionellen Kerngebieten Quantenchemie und Reaktionsdynamik werden Verfahren zur Modellbildung, praktischen Berechnung bzw. Computersimulation komplexer molekularer Systeme behandelt. Der Umfang ist so gefasst, dass damit der Stoff nicht nur fur einen Basiskurs Theoretische Chemie im Rahmen der Chemieausbildung, sondern auch fur anschliessende vertiefende Studien zur Verfugung steht. Anschlussstellen fur den Einstieg in die aktuelle Forschung und fur den Einsatz theoretisch-chemischer Methoden in Nachbargebieten (Molekulspektroskopie, Biochemie u. a.) werden aufgezeigt.
This textbook facilitates students' ability to apply fundamental principles and concepts in classical thermodynamics to solve challenging problems relevant to industry and everyday life. It also introduces the reader to the fundamentals of statistical mechanics, including understanding how the microscopic properties of atoms and molecules, and their associated intermolecular interactions, can be accounted for to calculate various average properties of macroscopic systems. The author emphasizes application of the fundamental principles outlined above to the calculation of a variety of thermodynamic properties, to the estimation of conversion efficiencies for work production by heat interactions, and to the solution of practical thermodynamic problems related to the behavior of non-ideal pure fluids and fluid mixtures, including phase equilibria and chemical reaction equilibria. The book contains detailed solutions to many challenging sample problems in classical thermodynamics and statistical mechanics that will help the reader crystallize the material taught. Class-tested and perfected over 30 years of use by nine-time Best Teaching Award recipient Professor Daniel Blankschtein of the Department of Chemical Engineering at MIT, the book is ideal for students of Chemical and Mechanical Engineering, Chemistry, and Materials Science, who will benefit greatly from in-depth discussions and pedagogical explanations of key concepts. Distills critical concepts, methods, and applications from leading full-length textbooks, along with the author's own deep understanding of the material taught, into a concise yet rigorous graduate and advanced undergraduate text; Enriches the standard curriculum with succinct, problem-based learning strategies derived from the content of 50 lectures given over the years in the Department of Chemical Engineering at MIT; Reinforces concepts covered with detailed solutions to illuminating and challenging homework problems.
This new edition is a concise introduction to the basic methods of computational physics. Readers will discover the benefits of numerical methods for solving complex mathematical problems and for the direct simulation of physical processes. The book is divided into two main parts: Deterministic methods and stochastic methods in computational physics. Based on concrete problems, the first part discusses numerical differentiation and integration, as well as the treatment of ordinary differential equations. This is extended by a brief introduction to the numerics of partial differential equations. The second part deals with the generation of random numbers, summarizes the basics of stochastics, and subsequently introduces Monte-Carlo (MC) methods. Specific emphasis is on MARKOV chain MC algorithms. The final two chapters discuss data analysis and stochastic optimization. All this is again motivated and augmented by applications from physics. In addition, the book offers a number of appendices to provide the reader with information on topics not discussed in the main text. Numerous problems with worked-out solutions, chapter introductions and summaries, together with a clear and application-oriented style support the reader. Ready to use C++ codes are provided online.
Scientists are increasingly finding themselves engaged in research problems that cross the traditional disciplinary lines of physics, chemistry, biology, materials science, and engineering. Because of its broad scope, statistical mechanics is an essential tool for students and more experienced researchers planning to become active in such an interdisciplinary research environment. Powerful computational methods that are based in statistical mechanics allow complex systems to be studied at an unprecedented level of detail. This book synthesizes the underlying theory of statistical mechanics with the computational techniques and algorithms used to solve real-world problems and provides readers with a solid foundation in topics that reflect the modern landscape of statistical mechanics. Topics covered include detailed reviews of classical and quantum mechanics, in-depth discussions of the equilibrium ensembles and the use of molecular dynamics and Monte Carlo to sample classical and quantum ensemble distributions, Feynman path integrals, classical and quantum linear-response theory, nonequilibrium molecular dynamics, the Langevin and generalized Langevin equations, critical phenomena, techniques for free energy calculations, machine learning models, and the use of these models in statistical mechanics applications. The book is structured such that the theoretical underpinnings of each topic are covered side by side with computational methods used for practical implementation of the theoretical concepts.
The renowned Oxford Chemistry Primers series, which provides focused introductions to a range of important topics in chemistry, has been refreshed and updated to suit the needs of today's students, lecturers, and postgraduate researchers. The rigorous, yet accessible, treatment of each subject area is ideal for those wanting a primer in a given topic to prepare them for more advanced study or research. The learning features provided, including questions at the end of every chapter and online multiple-choice questions, encourage active learning and promote understanding. Furthermore, frequent diagrams, margin notes, and glossary definitions all help to enhance a student's understanding of these essential areas of chemistry. Chemical Bonding gives a clear and succinct explanation of this fundamental topic, which underlies the structure and reactivity of all molecules, and therefore the subject of chemistry itself. Little prior knowledge or mathematical ability is assumed, making this the perfect text to introduce students to the subject.
Considers that Napoleon's 1812 Russian campaign may have failed because cold temperatures caused his army's tin buttons to disintegrate, identifying other important moments and traditions in history that were influenced by molecular properties. Reprint. 25,000 first printing.
Used in materials science, physical chemistry and physics, density functional methods provide a unifying description of electronic properties applicable to all materials while also giving specific information on the system under study. A large number of very different materials and systems (atoms, molecules, macromolecules, clusters, bulk solids, surfaces and interfaces) are presently being studied with methods based on density functional formalism. Density Functional Methods in Chemistry and Materials Science reports the results of this research. This book will be of particular interest to those research materials science from a theoretical standpoint. This work will demonstrate how the formalism has become a methodology leading to useful information on structural and electronic properties of a broad range of materials.
This series reflects the breadth of modern research in inorganic chemistry and fulfils the need for advanced texts. The series covers the whole range of inorganic and physical chemistry, solid state chemistry, coordination chemistry, main group chemistry and bioinorganic chemistry. Understanding the nature of the chemical bond is the key to understanding all chemistry, be it inorganic, physical, organic or biochemistry. In the form of a question and answer tutorial the fundamental concepts of chemical bonding are explored. These range from the nature of the chemical bond, via the regular hexagonal structure of benzene and the meaning of the term ‘metallic bond’, to d-orbital involvement in hypervalent compounds and the structure of N2O. Chemical Bonds: A Dialog provides
This volume, edited by a well-known specialist in the field of theoretical chemistry, gathers together a selection of papers on theoretical chemistry within the themes of mathematical, computational, and quantum chemistry. The authors present a rich assembly of some of the most important current research in the field of quantum chemistry in modern times. In Quantum Chemistry at the Dawn of the 21st Century, the editors aim to replicate the tradition of the fruitful Girona Workshops and Seminars, held at the University of Girona, Italy, annually for many years, which offered important scientific gatherings focusing on quantum chemistry. This volume, like the workshops, showcases a large variety of quantum chemical contributions from different points of view from some of the leading scientists in the field today. This unique volume does not pretend to provide a complete overview of quantum chemistry, but it does provide a broad set of contributions by some of the leading scientists on the field, under the expert editorship of two leaders in the field.
Small systems are a very active area of research and development due to improved instrumentation that allows for spatial resolution in the range of sizes from one to 100 nm. In this size range, many physical and chemical properties change, which opens up new approaches to the study of substances and their practical application. This affects both traditional fields of knowledge and many other new fields including physics, chemistry, biology, etc. This book highlights new developments in statistical thermodynamics that answer the most important questions about the specifics of small systems - when one cannot apply equations or traditional thermodynamic models.
This book is intended to help advanced undergraduate, graduate, and postdoctoral students in their daily work by offering them a compendium of numerical methods. The choice of methods pays significant attention to error estimates, stability and convergence issues, as well as optimization of program execution speeds. Numerous examples are given throughout the chapters, followed by comprehensive end-of-chapter problems with a more pronounced physics background, while less stress is given to the explanation of individual algorithms. The readers are encouraged to develop a certain amount of skepticism and scrutiny instead of blindly following readily available commercial tools. The second edition has been enriched by a chapter on inverse problems dealing with the solution of integral equations, inverse Sturm-Liouville problems, as well as retrospective and recovery problems for partial differential equations. The revised text now includes an introduction to sparse matrix methods, the solution of matrix equations, and pseudospectra of matrices; it discusses the sparse Fourier, non-uniform Fourier and discrete wavelet transformations, the basics of non-linear regression and the Kolmogorov-Smirnov test; it demonstrates the key concepts in solving stiff differential equations and the asymptotics of Sturm-Liouville eigenvalues and eigenfunctions. Among other updates, it also presents the techniques of state-space reconstruction, methods to calculate the matrix exponential, generate random permutations and compute stable derivatives.
This is a companion volume to K. Kong Wan's textbook Quantum Mechanics: A Fundamental Approach, published in 2019 by Jenny Stanford Publishing. The book contains more than 240 exercises and problems listed at the end of most chapters. This essential manual presents full solutions to all the exercises and problems that are designed to help the reader master the material in the textbook. Mastery of the material in the book would contribute greatly to the understanding of the concepts and formalism of quantum mechanics.
Molekulphysik und Quantenchemie fuhrt systematisch und leicht zuganglich in die Grundlagen der beiden Gebiete ein, wie es zum Verstandnis der physikalischen Eigenschaften von Molekulen und der chemischen Bindung erforderlich ist. Aufbauend auf Grundkenntnissen aus der Atom- und Quantenphysik (von den gleichen Autoren) vermittelt es den Studenten der Physik, der Physikalischen Chemie und der Theoretischen Chemie die experimentellen und theoretischen Grundlagen und deren Wechselwirkung. Die vorliegende funfte Auflage wurde um wesentliche aktuelle Entwicklungen experimenteller Methoden und theoretischer Ansatze erweitert. Neu: Abschnitte zu Molekularen Funktionseinheiten, zu Optischer Spektroskopie und Elektrolumineszenz. Durchgehende uberarbeitete Neuauflage. 133 Aufgaben vervollstandigen das Buch. Die dazugehorigen Losungen konnen im Internet abgerufen werden."
Spiro Quantum Chemistry is a popular as well as technical presentation of the ideas surrounding the emergence of a synthetic, analytical, and theoretical spiro quantum chemistry edifice, as well as a chemical topology scheme that successfully describes molecules and patterns, including the hydrocarbons and allotropes of carbon. In particular, the purpose of this book is to describe the generalization and realization of the organic chemistry concept of spiroconjugation into 1-, 2- and 3-dimensions. The book is divided into three parts: The first part describes spiroconjugation and presents a C lattice that exhibits the spiroconjugation phenomena in fully 3-dimensions. It also described the corresponding 1-dimensional substructures of this lattice that exhibit spiroconjugation delocalized in 1-D. The second part presents experimental evidence for the synthetic realization of this so-called glitter allotrope of C that is spiroconjugated in 3-D, and present evidence why this synthetically realized C allotrope has a metallic status. The third part describes the chemical topology of the glitter C allotrope and of the other commonly known allotropes of C.This chemical topology enables one to map the C allotropes, including glitter, in a topology space allowing one to classify them. This unique book provides insights into the potential richness of organic chemistry in terms of a source of a metallic allotrope of C. The reader will learn to appreciate the generalization of the spiroconjugation phenomenon in 1-D, 2-D, and 3D as a concept in organic chemistry.
This book deals with a central topic at the interface of chemistry and physics - the understanding of how the transformation of matter takes place at the atomic level. Building on the laws of physics, the book focuses on the theoretical framework for predicting the outcome of chemical reactions. The style is highly systematic with attention to basic concepts and clarity of presentation. Molecular reaction dynamics is about the detailed atomic-level description of chemical reactions. Based on quantum mechanics and statistical mechanics or, as an approximation, classical mechanics, the dynamics of uni- and bi-molecular elementary reactions are described. The book features a detailed presentation of transition-state theory which plays an important role in practice, and a comprehensive discussion of basic theories of reaction dynamics in condensed phases. Examples and end-of-chapter problems are included in order to illustrate the theory and its connection to chemical problems.
Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost. This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a self-contained review of ground-state DFT, followed by a detailed and pedagogical treatment of the formal framework of TDDFT. It is explained how excitation energies can be calculated from linear-response TDDFT. Among the more advanced topics are time-dependent current-density-functional theory, orbital functionals, and many-body theory. Many applications are discussed, including molecular excitations, ultrafast and strong-field phenomena, excitons in solids, van der Waals interactions, nanoscale transport, and molecular dynamics.
Modern thermodynamics is a unique but still not a logically self-consistent field of knowledge. It has a proven universal applicability and significance but its actual potential is still latent. The development of the foundations of thermodynamics was in effect non-stop but absolutely no one has any idea about this. This book is the first of its kind that will motivate researchers to build up a logically consistent field of thermodynamics. It greatly appreciates the actual depth and potential of thermodynamics which might also be of interest to readers in history and philosophy of scientific research. The book presents the life stories of the protagonists in detail and allows readers to cast a look at the whole scene of the field by showcasing a significant number of their colleagues whose works have fittingly complemented their achievements. It also tries to trigger a detailed analysis of the reasons why the actual work in this extremely important field has in effect gone astray. It comprises five chapters and introduces three scientists in the first two chapters, which are specifically devoted to the Scandinavian achievements in macroscopic thermodynamics. These introductions are novel and call for a detailed reconsideration of the field. The third chapter acquaints the readers with their fourth colleague in Germany who was working on the proper link between the macroscopic thermodynamics, kinetics, and the atomistic representation of matter. The fourth chapter brings in their fifth colleague in the United States who could formally infer the famous formula S = k * ln(W), ingeniously guessed by Ludwig Boltzmann, and thus clarify the physical sense of the entropy notion. The last chapter summarizes the above-mentioned discourses. |
You may like...
Sugar-Free & Carb-Conscious Living
Monique le Roux Forslund
Paperback
(6)
Made to Lead - Empowering Women for…
Nicole Massive Martin
Paperback
|