![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Relativity physics
Tobias Schuttler stellt in diesem essential beide im Detail sehr anspruchsvollen Gebiete - Einsteins beruhmte Relativitatstheorie und die Satellitenortung mit GPS und Galileo - in allgemein verstandlicher Weise dar und erklart die Einflusse der Relativitatstheorie bei der Satellitennavigation ohne hoehere Mathematik. Es werden auch die zu dieser Betrachtung wichtigen Formeln genannt und motiviert. Um die Einflusse der Relativitatstheorie auf ein Satellitennavigationssystem wie das europaische Galileo zu verstehen, muss man sich mit dem konkreten Messvorgang bei der Ortung auseinandersetzen. Die Grundidee des Verfahrens ist einfach - die technische Umsetzung indes hoechst komplex.
Professor Sir Roger Penrose's work, spanning fifty years of science, with over five thousand pages and more than three hundred papers, has been collected together for the first time and arranged chronologically over six volumes, each with an introduction from the author. Where relevant, individual papers also come with specific introductions or notes. Many important realizations concerning twistor theory occurred during the short period of this third volume, providing a new perspective on the way that mathematical features of the complex geometry of twistor theory relate to actual physical fields. Following on from the nonlinear graviton construction, a twistor construction was found for (anti-)self-dual electromagnetism allowing the general (anti-)self-dual Yang-Mills field to be obtained. It became clear that some features of twistor contour integrals could be understood in terms of holomorphic sheaf cohomology. During this period, the Oxford research group founded the informal publication, Twistor Newsletter. This volume also contains the influential Weyl curvature hypothesis and new forms of Penrose tiles.
Professor Sir Roger Penrose's work, spanning fifty years of science, with over five thousand pages and more than three hundred papers, has been collected together for the first time and arranged chronologically over six volumes, each with an introduction from the author. Where relevant, individual papers also come with specific introductions or notes. Among the new developments that occurred during this period was the introduction of a particular notion of 'quasi-local mass-momentum and angular momentum', the topic of Penrose's Royal Society paper. Many encouraging results were initially obtained but, later, difficulties began to emerge and remain today. Also, an extensive paper (with Eastwood and Wells) gives a thorough account of the relation between twistor cohomology and massless fields. This volume witnesses Penrose's increasing conviction that the puzzling issue of quantum measurement could only be resolved by the appropriate unification of quantum mechanics with general relativity, where that union must involve an actual change in the rules of quantum mechanics as well as in space-time structure. Penrose's first incursions into a possible relation between consciousness and quantum state reduction are also covered here.
Professor Sir Roger Penrose's work, spanning fifty years of science, with over five thousand pages and more than three hundred papers, has been collected together for the first time and arranged chronologically over six volumes, each with an introduction from the author. Where relevant, individual papers also come with specific introductions or notes. This sixth volume describes an actual experiment to measure the length of time that a quantum superposition might last (developing the Diosi-Penrose proposal). It also discusses the significant progress made in relation to incorporating the 'googly' information for a gravitational field into the structure of a curved twistor space. Penrose also covers such things as the geometry of light rays in relation to twistor-space structures, the utility of complex numbers in drawing three-dimensional shapes, and the geometrical representation of different types of musical scales. The turn of the millennium was also an opportunity to reflect on progress in many areas up until that point.
Professor Sir Roger Penrose's work, spanning fifty years of science, with over five thousand pages and more than three hundred papers, has been collected together for the first time and arranged chronologically over six volumes, each with an introduction from the author. Where relevant, individual papers also come with specific introductions or notes. Publication of The Emperor's New Mind (OUP 1989) had caused considerable debate and Penrose's responses are included in this volume. Arising from this came the idea that large-scale quantum coherence might exist within the conscious brain, and actual conscious experience would be associated with a reduction of the quantum state. Within this collection, Penrose also proposes that a twistor might usefully be regarded as a source (or 'charge') for a massless field of spin 3/2, suggesting that the twistor space for a Ricci-flat space-time might actually be the space of such possible sources. Towards the end of the volume, Penrose begins to develop a quite different approach to incorporating full general relativity into twistor theory. This period also sees the origin of the Diosi-Penrose proposal.
The two pillars of modern physics are general relativity and quantum field theory, the former describes the large scale structure and dynamics of space-time, the latter, the microscopic constituents of matter. Combining the two yields quantum field theory in curved space-time, which is needed to understand quantum field processes in the early universe and black holes, such as the well-known Hawking effect. This book examines the effects of quantum field processes back-reacting on the background space-time which become important near the Planck time (10-43 sec). It explores the self-consistent description of both space-time and matter via the semiclassical Einstein equation of semiclassical gravity theory, exemplified by the inflationary cosmology, and fluctuations of quantum fields which underpin stochastic gravity, necessary for the description of metric fluctuations (space-time foams). Covering over four decades of thematic development, this book is a valuable resource for researchers interested in quantum field theory, gravitation and cosmology.
The extraordinary story of the scientific expeditions that ushered in the era of relativity In 1919, British scientists led expeditions to Brazil and Africa to test Albert Einstein's new theory of general relativity in what became the century's most celebrated scientific experiment. The result ushered in a new era and made Einstein a celebrity by confirming his prediction that the path of light rays would be bent by gravity. Yet the effort to "weigh light" during the May 29, 1919, solar eclipse has become clouded by myth and skepticism. Could Arthur Eddington and Frank Dyson have gotten the results they claimed? Did the pacifist Eddington falsify evidence to foster peace after a horrific war by validating the theory of a German antiwar campaigner? In No Shadow of a Doubt, Daniel Kennefick provides definitive answers by offering the most comprehensive and authoritative account of how expedition scientists overcame war, bad weather, and equipment problems to make the experiment a triumphant success.
Theoretical physics and foundations of physics have not made much progress in the last few decades. Whether we are talking about unifying general relativity and quantum field theory (quantum gravity), explaining so-called dark energy and dark matter (cosmology), or the interpretation and implications of quantum mechanics and relativity, there is no consensus in sight. In addition, both enterprises are deeply puzzled about various facets of time including above all, time as experienced. The authors argue that, across the board, this impasse is the result of the "dynamical universe paradigm," the idea that reality is fundamentally made up of physical entities that evolve in time from some initial state according to dynamical laws. Thus, in the dynamical universe, the initial conditions plus the dynamical laws explain everything else going exclusively forward in time. In cosmology, for example, the initial conditions reside in the Big Bang and the dynamical law is supplied by general relativity. Accordingly, the present state of the universe is explained exclusively by its past. This book offers a completely new paradigm (called Relational Blockworld), whereby the past, present and future co-determine each other via "adynamical global constraints," such as the least action principle. Accordingly, the future is just as important for explaining the present as is the past. Most of the book is devoted to showing how Relational Blockworld resolves many of the current conundrums of both theoretical physics and foundations of physics, including the mystery of time as experienced and how that experience relates to the block universe.
Essential mathematical insights into one of the most important and challenging open problems in general relativity—the stability of black holes One of the major outstanding questions about black holes is whether they remain stable when subject to small perturbations. An affirmative answer to this question would provide strong theoretical support for the physical reality of black holes. In this book, Sergiu Klainerman and Jérémie Szeftel take a first important step toward solving the fundamental black hole stability problem in general relativity by establishing the stability of nonrotating black holes—or Schwarzschild spacetimes—under so-called polarized perturbations. This restriction ensures that the final state of evolution is itself a Schwarzschild space. Building on the remarkable advances made in the past fifteen years in establishing quantitative linear stability, Klainerman and Szeftel introduce a series of new ideas to deal with the strongly nonlinear, covariant features of the Einstein equations. Most preeminent among them is the general covariant modulation (GCM) procedure that allows them to determine the center of mass frame and the mass of the final black hole state. Essential reading for mathematicians and physicists alike, this book introduces a rich theoretical framework relevant to situations such as the full setting of the Kerr stability conjecture.
Do we need to reconsider scientific methodology in light of modern physics? Has the traditional scientific method become outdated, does it need to be defended against dangerous incursions, or has it always been different from what the canonical view suggests? To what extent should we accept non-empirical strategies for scientific theory assessment? Many core aspects of contemporary fundamental physics are far from empirically well-confirmed. There is controversy on the epistemic status of the corresponding theories, in particular cosmic inflation, the multiverse, and string theory. This collection of essays is based on the high profile workshop 'Why Trust a Theory?' and provides interdisciplinary perspectives on empirical testing in fundamental physics from leading physicists, philosophers and historians of science. Integrating different contemporary and historical positions, it will be of interest to philosophers of science and physicists, as well as anyone interested in the foundations of contemporary science.
Explore spectacular advances in cosmology, relativistic astrophysics, gravitational wave science, mathematics, computational science, and the interface of gravitation and quantum physics with this unique celebration of the centennial of Einstein's discovery of general relativity. Twelve comprehensive and in-depth reviews, written by a team of world-leading international experts, together present an up-to-date overview of key topics at the frontiers of these areas, with particular emphasis on the significant developments of the last three decades. Interconnections with other fields of research are also highlighted, making this an invaluable resource for both new and experienced researchers. Commissioned by the International Society on General Relativity and Gravitation, and including accessible introductions to cutting-edge topics, ample references to original research papers, and informative colour figures, this is a definitive reference for researchers and graduate students in cosmology, relativity, and gravitational science.
It is commonly assumed that if the Sun suddenly turned into a black hole, it would suck Earth and the rest of the planets into oblivion. Yet, as prominent author and astrophysicist Jeffrey Bennett points out, black holes don't suck. With that simple idea in mind, Bennett begins an entertaining introduction to Einstein's theories of relativity, describing the amazing phenomena readers would actually experience if they took a trip to a black hole. The theory of relativity reveals the speed of light as the cosmic speed limit, the mind-bending ideas of time dilation and curvature of spacetime, and what may be the most famous equation in history: E = mc2. Indeed, the theory of relativity shapes much of our modern understanding of the universe. It is not "just a theory"-every major prediction of relativity has been tested to exquisite precision, and its practical applications include the Global Positioning System (GPS). Amply illustrated and written in clear, accessible prose, Bennett's book proves anyone can grasp the basics of Einstein's ideas. His intuitive, nonmathematical approach gives a wide audience its first real taste of how relativity works and why it is so important to science and the way we view ourselves as human beings.
Der Wunsch nach einem Verstandnis von Einsteins Theorien ist unter naturwissenschaftlich Interessierten weit verbreitet - und bleibt doch meist unerfullt. Dieses Buch bietet nun eine einzigartige neue Chance: Mit anschaulichen Gedankenexperimenten, exakten Abbildungen, treffenden Analogien und mit strikt auf Mittelschulmathematik beschrankten Rechenschritten werden Sie behutsam in die immer wieder faszinierende Welt der Relativitatstheorien gefuhrt. Sachlich, grundlich und dennoch faszinierend werden die Zeitdehnung, das Zwillingsparadoxon, Schwarze Loecher oder die Rotverschiebung des Lichts dargestellt, daneben viele weitere relativistische Effekte, die Ihnen hier erstmals mit ganz einfachen mathematischen Werkzeugen zuganglich gemacht werden. ... das Buch ist sehr empfehlenswert: Der gesamte Text ist klar, ausfuhrlich und verstandlich geschrieben. Ein ausserst gelungenes Buch also, das halt, was es im Untertitel verspricht ... Stephan Edinger, Sterne und Weltraum, Mai 2008
Professor Sir Roger Penrose's work, spanning fifty years of science, with over five thousand pages and more than three hundred papers, has been collected together for the first time and arranged chronologically over six volumes, each with an introduction from the author. Where relevant, individual papers also come with specific introductions or notes. Developing ideas sketched in the first volume, twistor theory is now applied to genuine issues of physics, and there are the beginnings of twistor diagram theory (an analogue of Feynman Diagrams). This collection includes joint papers with Stephen Hawking, and uncovers certain properties of black holes. The idea of cosmic censorship is also first proposed. Along completely different lines, the first methods of aperiodic tiling for the Euclidean plane that come to be known as Penrose tiles are described. This volume also contains Penrose's three prize-winning essays for the Gravity Foundation (two second places with both Ezra Newman and Steven Hawking, and a solo first place for 'The Non-linear graviton').
This is the single most complete guide to Albert Einstein's life and work for students, researchers, and browsers alike. Written by three leading Einstein scholars who draw on their combined wealth of expertise gained during their work on the Collected Papers of Albert Einstein, this authoritative and accessible reference features more than one hundred entries and is divided into three parts covering the personal, scientific, and public spheres of Einstein's life. An Einstein Encyclopedia contains entries on Einstein's birth and death, family and romantic relationships, honors and awards, educational institutions where he studied and worked, citizenships and immigration to America, hobbies and travels, plus the people he befriended and the history of his archives and the Einstein Papers Project. Entries on Einstein's scientific theories provide useful background and context, along with details about his assistants, collaborators, and rivals, as well as physics concepts related to his work. Coverage of Einstein's role in public life includes entries on his Jewish identity, humanitarian and civil rights involvements, political and educational philosophies, religion, and more. Commemorating the hundredth anniversary of the theory of general relativity, An Einstein Encyclopedia also includes a chronology of Einstein's life and appendixes that provide information for further reading and research, including an annotated list of a selection of Einstein's publications and a review of selected books about Einstein. * More than 100 entries cover the rich details of Einstein's personal, professional, and public life* Authoritative entries explain Einstein's family relationships, scientific achievements, political activities, religious views, and more* More than 40 illustrations include photos of Einstein and his circle plus archival materials* A chronology of Einstein's life, appendixes, and suggestions for further reading provide essential details for further research
From 1900 to 1924 Spain experienced a stage of vigorous academic freedom and unfettered scientific inquiry that strikingly contrasted with the repressive atmosphere of the periods before and after. Thomas Glick explores this "recovery of science" by focusing on the national discussion provoked by Einstein's trip to Spain in 1923. His visit stimulated a debate on the nature and social value of science that was remarkable in a society so recently awakened to the scientific role in the process of modernization. Einstein's universal appeal created the unlikely occasion for a fascination with science that cut across social classes and previously established domains of discourse. The political Right, which in other countries opposed relativity in the name of "traditional" Newtonian science, backed the new theories with surprising enthusiasm. Engineers, a politically conservative group, contributed much of the rank-and-file support for Einstein; physicians, who tended to the Left, also eagerly embraced his ideas, as did a host of mutually antagonistic political groups, including anarcho-syndicalists and bourgeois Catalan nationalists. Professor Glick's analysis of this multidimensional scientific forum provides an unusual amount of information on science in Spain and an opportunity to contrast the Spaniards' reception of Einstein's work and that of other nations during this historical period. Originally published in 1988. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This book, explores the conceptual foundations of Einstein's theory of relativity: the fascinating, yet tangled, web of philosophical, mathematical, and physical ideas that is the source of the theory's enduring philosophical interest. Originally published in 1983. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Based on papers presented at the Jerusalem Einstein Centennial Symposium in March 1979, this volume sets forth an articulated sequence of chapters on the impact of Einstein's work, not only in science but in humanistic studies and problems such as international security in the nuclear age. Originally published in 1982. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This book offers a comprehensive, university-level introduction to Einstein's Special Theory of Relativity. In addition to the purely theoretical aspect, emphasis is also given to its historical development as well as to the experiments that preceded the theory and those performed in order to test its validity.The main body of the book consists of chapters on Relativistic Kinematics and Dynamics and their applications, Optics and Electromagnetism. These could be covered in a one-semester course. A more advanced course might include the subjects examined in the other chapters of the book and its appendices.As a textbook, it has some unique characteristics: It provides detailed proofs of the theorems, offers abundant figures and discusses numerous examples. It also includes a number of problems for readers to solve, the complete solutions of which are given at the end of the book.It is primarily intended for use by university students of physics, mathematics and engineering. However, as the mathematics needed is of an upper-intermediate level, the book will also appeal to a more general readership.
Dark energy, the mysterious cause of the accelerating expansion of the universe, is one of the most important fields of research in astrophysics and cosmology today. Introducing the theoretical ideas, observational methods and results, this textbook is ideally suited to graduate courses on dark energy, and will also supplement advanced cosmology courses. Providing a thorough introduction to this exciting field, the textbook covers the cosmological constant, quintessence, k-essence, perfect fluid models, extra-dimensional models, and modified gravity. Observational research is reviewed, from the cosmic microwave background to baryon acoustic oscillations, weak lensing and cluster abundances. Every chapter ends with problems, with full solutions provided, and any calculations are worked through step-by-step.
The 2015 centenary of the publication of Einstein's general theory of relativity, and the first detection of gravitational waves have focused renewed attention on the question of whether Einstein was right. This review of experimental gravity provides a detailed survey of the intensive testing of Einstein's theory of gravity, including tests in the emerging strong-field dynamical regime. It discusses the theoretical frameworks needed to analyze gravitational theories and interpret experiments. Completely revised and updated, this new edition features coverage of new alternative theories of gravity, a unified treatment of gravitational radiation, and the implications of the latest binary pulsar observations. It spans the earliest tests involving the Solar System to the latest tests using gravitational waves detected from merging black holes and neutron stars. It is a comprehensive reference for researchers and graduate students working in general relativity, cosmology, particle physics and astrophysics.
There is little doubt that Einstein's theory of relativity captures the imagination. Not only has it radically altered the way we view the universe, but the theory also has a considerable number of surprises in store. This is especially so in the three main topics of current interest that this book reaches, namely: black holes, gravitational waves, and cosmology. The main aim of this textbook is to provide students with a sound mathematical introduction coupled to an understanding of the physical insights needed to explore the subject. Indeed, the book follows Einstein in that it introduces the theory very much from a physical point of view. After introducing the special theory of relativity, the basic field equations of gravitation are derived and discussed carefully as a prelude to first solving them in simple cases and then exploring the three main areas of application. This new edition contains a substantial extension content that considers new and updated developments in the field. Topics include coverage of the advancement of observational cosmology, the detection of gravitational waves from colliding black holes and neutron stars, and advancements in modern cosmology. Einstein's theory of relativity is undoubtedly one of the greatest achievements of the human mind. Yet, in this book, the author makes it possible for students with a wide range of abilities to deal confidently with the subject. Based on both authors' experience teaching the subject this is achieved by breaking down the main arguments into a series of simple logical steps. Full details are provided in the text and the numerous exercises while additional insight is provided through the numerous diagrams. As a result this book makes an excellent course for any reader coming to the subject for the first time while providing a thorough understanding for any student wanting to go on to study the subject in depth
Max Jammer's Concepts of Simultaneity presents a comprehensive, accessible account of the historical development of an important and controversial concept -- which played a critical role in initiating modern theoretical physics -- from the days of Egyptian hieroglyphs through to Einstein's work in 1905, and beyond. Beginning with the use of the concept of simultaneity in ancient Egypt and in the Bible, the study discusses its role in Greek and medieval philosophy as well as its significance in Newtonian physics and in the ideas of Leibniz, Kant, and other classical philosophers. The central theme of Jammer's presentation is a critical analysis of the use of this concept by philosophers of science, like PoincarA(c), and its significant role in inaugurating modern theoretical physics in Einstein's special theory of relativity. Particular attention is paid to the philosophical problem of whether the notion of distant simultaneity presents a factual reality or only a hypothetical convention. The study concludes with an analysis of simultaneity's importance in general relativity and quantum mechanics. |
![]() ![]() You may like...
Field Guide to the Battlefields of South…
Nicki Von Der Heyde
Paperback
The First English Revolution - Simon de…
Adrian Jobson
Hardcover
Magna Carta (1914) - A Commentary on the…
William Sharp McKechnie
Hardcover
R1,202
Discovery Miles 12 020
Anglo-Norman Studies XLI - Proceedings…
Elisabeth M. C. Van Houts
Hardcover
R3,275
Discovery Miles 32 750
|