![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Relativity physics
"Le bolle stavano turbinando tutto intorno a me e massaggiavano il mio corpo ... Mentre me la godevo in questo fantastico bagno di bolle, i miei occhi si fecero pesanti e mi lasciaii trasportare in un dormiveglia sublimamente estatico." Cosi inizia l incontro di Alfie con una vasca da bagno eccezionale e rivelatrice, acquistata da un vicino misterioso di nome Al. L Enigma di Einstein, ovvero buchi neri nel mio bagno di schiuma, racconta la storia della teoria della gravitazione, dai suoi primordi fino agli ultimi sviluppi in astrofisica, focalizzandosi sulla teoria della relativita generale di Albert Einstein e sulla fisica dei buchi neri. Tramite conversazioni avvincenti e diagrammi scarabocchiati su tovaglioli di carta, si susseguono a ruota i rudimenti della relativita, dello spazio-tempo e di molti aspetti della fisica moderna. In scenette narrate con abilita pedagogica e notevole talento letterario, il lettore s imbattera nelle lezioni informali che un astrofisico cosmopolita tiene al suo amico Alfie, organizzatore free lance di progetti di ricerca. Unitevi al divertimento intellettuale ed emozionatevi con le idee spumeggianti, mentre con la fantasia vi godete un rilassante bagno in questa vasca magica "
Physical Relativity explores the nature of the distinction at the
heart of Einstein's 1905 formulation of his special theory of
relativity: that between kinematics and dynamics. Einstein himself
became increasingly uncomfortable with this distinction, and with
the limitations of what he called the "principle theory" approach
inspired by the logic of thermodynamics. A handful of physicists
and philosophers have over the last century likewise expressed
doubts about Einstein's treatment of the relativistic behavior of
rigid bodies and clocks in motion in the kinematical part of his
great paper, and suggested that the dynamical understanding of
length contraction and time dilation intimated by the immediate
precursors of Einstein is more fundamental. Harvey Brown both
examines and extends these arguments (which support a more
"constructive" approach to relativistic effects in Einstein's
terminology), after giving a careful analysis of key features of
the pre-history of relativity theory. He argues furthermore that
the geometrization of the theory by Minkowski in 1908 brought
illumination, but not a causal explanation of relativistic effects.
Finally, Brown tries to show that the dynamical interpretation of
special relativity defended in the book is consistent with the role
this theory must play as a limiting case of Einstein's 1915 theory
of gravity: the general theory of relativity.
In 1921, five years after the appearance of his comprehensive paper on general relativity and twelve years before he left Europe permanently to join the Institute for Advanced Study, Albert Einstein visited Princeton University, where he delivered the Stafford Little Lectures for that year. These four lectures constituted an overview of his then-controversial theory of relativity. Princeton University Press made the lectures available under the title "The Meaning of Relativity," the first book by Einstein to be produced by an American publisher. As subsequent editions were brought out by the Press, Einstein included new material amplifying the theory. A revised version of the appendix "Relativistic Theory of the Non-Symmetric Field," added to the posthumous edition of 1956, was Einstein's last scientific paper.
These two volumes are the proceedings of a major International Symposium on General Relativity held at the University of Maryland 27 to 29 March 1993 to celebrate the sixtieth birthdays of Professor Charles Misner and Professor Dieter Brill. The volumes cover classical general relativity, quantum gravity and quantum cosmology, canonical formulation and the initial value problem, topology and geometry of spacetime and fields, mathematical and physical cosmology, and Black Hole physics and astrophysics. As invited articles, the papers in these volumes have an aim which goes beyond that of a standard conference proceedings. Not only do the authors discuss the most recent research results in their fields, but many also provide historical perspectives on how their subjects developed and offer individual insights in their search for new directions.
Der Grundkurs Theoretische Physik in 4 in sich abgeschlossenen BAnden basiert auf langjAhrig erprobten Vorlesungen, in denen die Aufbereitung der theoretisch-physikalischen Grundlagen in enger Form mit dem entsprechenden Stoff aus der Mathematik verknA1/4pft wird. 1 Theoretische Mechanik 2 Elektrodynamik und RelativitAtstheorie 3 Quantenmechanik 4 Thermodynamik und Statistische Physik Der zweite Band zur Elektrodynamik und RelativitAtstheorie erarbeitet schrittweise die Grundlagen der Physik, unterstA1/4tzt von einer beiliegenden CD-ROM mit einem auf die Belange der Studierenden der Physik zugeschnittenen Mathematik-Teil sowie einer interaktiven Aufgabensammlung mit Animationen.
This volume contains the proceedings of the twelfth triannual International Conference on General Relativity and Gravitation, the premier conference for presentation and discussion of new ideas in relativity and cosmology. The volume will contain the invited talks as well as short reports on the parallel workshops that took place at the meeting. It will be essential reading for all research workers in relativity, cosmology and astrophysics.
The past forty years have been a time of spectacular development in the study of general relativity and cosmology. A special role in this has been played by the influential research groups led by Dennis Sciama in Cambridge, Oxford, and Trieste. In April 1992 many of his ex-students and collaborators came to Trieste (where he is currently Professor) for a review meeting to celebrate his 65th birthday. This book consists of written versions of the talks presented which, taken together, comprise an authoritative overview of developments which have taken place during his career to date. The topics covered include fundamental questions in general relativity and cosmology, black holes, active galactic nuclei, galactic structure, dark matter, and large scale structure.
This volume includes contributions by leading workers in the field given at the workshop on Numerical Relativity held in Southampton in December 1991. Numerical Relativity, or the numerical solution of astrophysical problems using powerful computers to solve Einstein's equations, has grown rapidly over the last 15 years. It is now an important route to understanding the structure of the Universe, and is the only route currently available for approaching certain important astrophysical scenarios. The Southampton meeting was notable for the first full report of the new 2+2 approach and the related null or characteristic approaches, as well as for updates on the established 3+1 approach, including both Newtonian and fully relativistic codes. The contributions range from theoretical (formalisms, existence theorems) to the computational (moving grids, multiquadrics and spectral methods).
This textbook on the nature of space and time explains the new theory of Space Dynamics, which describes the dynamics of gravity as the evolution of conformal 3-dimensional geometry. Shape Dynamics is equivalent to Einstein's General Relativity in those situations in which the latter has been tested experimentally, but the theory is based on different first principles. It differs from General Relativity in certain extreme conditions. Shape Dynamics allows us to describe situations in which the spacetime picture is no longer adequate, such as in the presence of singularities, when the idealization of infinitesimal rods measuring scales and infinitesimal clocks measuring proper time fails. This tutorial book contains both a quick introduction for readers curious about Shape Dynamics, and a detailed walk-through of the historical and conceptual motivations for the theory, its logical development from first principles and a description of its present status. It includes an explanation of the origin of the theory, starting from problems posed first by Newton more than 300 years ago. The book will interest scientists from a large community including all foundational fields of physics, from quantum gravity to cosmology and quantum foundations, as well as researchers interested in foundations. The tutorial is sufficiently self-contained for students with some basic background in Lagrangian/Hamiltonian mechanics and General Relativity.
This book provides a thorough introduction to Einstein's special theory of relativity, suitable for anyone with a minimum of one year's university physics with calculus. It is divided into fundamental and advanced topics. The first section starts by recalling the Pythagorean rule and its relation to the geometry of space, then covers every aspect of special relativity, including the history. The second section covers the impact of relativity in quantum theory, with an introduction to relativistic quantum mechanics and quantum field theory. It also goes over the group theory of the Lorentz group, a simple introduction to supersymmetry, and ends with cutting-edge topics such as general relativity, the standard model of elementary particles and its extensions, superstring theory, and a survey of important unsolved problems. Each chapter comes with a set of exercises. The book is accompanied by a CD-ROM illustrating, through interactive animation, classic problems in relativity involving motion.
Thoroughly revised and updated, this textbook provides a pedagogical introduction to relativity. It is self-contained, but the reader is expected to have a basic knowledge of theoretical mechanics and electrodynamics. It covers the most important features of both special and general relativity, as well as touching on more difficult topics, such as the field of charged pole-dipole particles, the Petrov classification, groups of motions, gravitational lenses, exact solutions and the structure of infinity. The necessary mathematical tools (tensor calculus, Riemannian geometry) are provided, most of the derivations are given in full, and exercises are included where appropriate. Written as a textbook for undergraduate and introductory graduate courses, it will also be of use to researchers working in the field. The bibliography gives the original papers and directs the reader to useful monographs and review papers.
This timely volume provides a broad survey of (2+1)-dimensional quantum gravity. It emphasises the 'quantum cosmology' of closed universes and the quantum mechanics of the (2+1)-dimensional black hole. It compares and contrasts a variety of approaches, and examines what they imply for a realistic theory of quantum gravity. General relativity in three spacetime dimensions has become a popular arena in which to explore the ramifications of quantum gravity. As a diffeomorphism-invariant theory of spacetime structure, this model shares many of the conceptual problems of realistic quantum gravity. But it is also simple enough that many programs of quantization can be carried out explicitly. After analysing the space of classical solutions, this book introduces some fifteen approaches to quantum gravity - from canonical quantization in York's 'extrinsic time' to Chern-Simons quantization, from the loop representation to covariant path integration to lattice methods. Relationships among quantizations are explored, as well as implications for such issues as topology change and the 'problem of time'. This book is an invaluable resource for all graduate students and researchers working in quantum gravity.
This book provides an accessible introduction to astronomy and general relativity, aiming to explain the Universe, not just to describe it. Written by an expert in relativity who is known for his clearly-written advanced textbooks, the treatment uses only high-school level mathematics, supplemented by optional computer programs, to explain the laws of physics governing gravity from Galileo and Newton to Einstein.
It is commonly assumed that if the Sun suddenly turned into a black hole, it would suck Earth and the rest of the planets into oblivion. Yet, as prominent author and astrophysicist Jeffrey Bennett points out, black holes don't suck. With that simple idea in mind, Bennett begins an entertaining introduction to Einstein's theories of relativity, describing the amazing phenomena readers would actually experience if they took a trip to a black hole. The theory of relativity reveals the speed of light as the cosmic speed limit, the mind-bending ideas of time dilation and curvature of spacetime, and what may be the most famous equation in history: E = mc2. Indeed, the theory of relativity shapes much of our modern understanding of the universe. It is not "just a theory"-every major prediction of relativity has been tested to exquisite precision, and its practical applications include the Global Positioning System (GPS). Amply illustrated and written in clear, accessible prose, Bennett's book proves anyone can grasp the basics of Einstein's ideas. His intuitive, nonmathematical approach gives a wide audience its first real taste of how relativity works and why it is so important to science and the way we view ourselves as human beings.
This book tells the human story of one of man's greatest intellectual adventures - how it came to be understood that light travels at a finite speed, so that when we look up at the stars, we are looking back in time. And how the search for a God-given absolute frame of reference in the universe led most improbably to Einstein's most famous equation E=mc2, which represents the energy that powers the stars and nuclear weapons. From the ancient Greeks measuring the solar system, to the theory of relativity and satellite navigation, the book takes the reader on a gripping historical journey. We learn how Galileo discovered the moons of Jupiter and used their eclipses as a global clock, allowing travellers to find their Longitude. And how Ole Roemer, noticing that the eclipses were a little late, used this to obtain the first measurement of the speed of light, which takes eight minutes to get to us from the sun. We move from the international collaborations to observe the Transits of Venus, including Cook's voyage to Australia, to the achievements of Young and Fresnel, whose discoveries eventually taught us that light travels as a wave but arrives as a particle, and all the quantum weirdness which follows. In the nineteenth century, we find Faraday and Maxwell, struggling to understand how light can propagate through the vacuum of space unless it is filled with a ghostly vortex Aether foam. We follow the brilliantly gifted experimentalists Hertz, discoverer of radio, Michelson with his search for the Aether wind, and Foucault and Fizeau with their spinning mirrors and lightbeams across the rooftops of Paris. Messaging faster than light using quantum entanglement, and the reality of the quantum world, conclude this saga.
... schon wieder ein neues Buch iiber die Spezielle Relativitatstheorie. Wozu? Es gibt doch wirklich genug gute Biicher zu diesem Thema. Das ist eigentlich auch unsere Ansicht; warum wir dann doch dieses Manuskript fertiggestellt haben, ist eine Verkettung eher ungewollter Umstande. 2uerst entstand, als Folge eines leichtsinnigen Versprechens, das ich H6rern meiner Vorlesung - nicht ahnend, wieviel Zeit die Ausarbeitung erfordern wiirde - gegeben hatte, eine Reinschrift der Vorlesungsvor- bereitung. Dieses Skript fand, wie man heute sagt., eine erstaunliche Akzeptanz, vermutlich, weil die modernen yom Fernsehen verw6hn- ten Studenten in Vorlesungen nicht mehr gerne mitschreiben, sondern Vorlesungen mehr als Unterhaltungsveranstaltungen ansehen wollen. Nachdem damit fUr uns dieser Punkt abgehakt war und die Leh- re wieder etwas hinter die Forschung zuriicktreten sollte, kam Herr Schwarz yom Verlag Vieweg und wollte das Skript als Lehrbuch her- ausbringen, was grundsatzlich natiirlich kein Problem gewesen ware, heutzutage ist ja alles cameraready im Computer. Aber Herr Schwarz, als moderner Physiker, meinte, ein heutiges Buch iiber spezielle Relati- vitatstheorie miiBte 'rf, ..v enthalten und nicht das zwar praktische, aber altmodische i von Minkowski. Da er damit im Prinzip recht hatte, ging die Formuliererei ab Kapitel 5 von neuem los.
This engaging text takes the reader along the trail of light from Newton's particles to Einstein's relativity. Like the best detective stories, it presents clues and encourages the reader to draw conclusions before the answers are revealed. The first seven chapters cover the behavior of light, Newton's particle theory, waves and an electromagnetic wave theory of light, the photon, and wave-particle duality. Baierlein goes on to develop the special theory of relativity, showing how time dilation and length contraction are consequences of the two simple principles underlying the theory. An extensive chapter derives the equation E = mc2 clearly from first principles and then explores its consequences.
On Albert Einstein's seventy-sixth and final birthday, a friend gave him a simple toy made from a broomstick, a brass ball attached to a length of string, and a weak spring. Einstein was delighted: the toy worked on a principle he had conceived fifty years earlier when he was working on his revolutionary theory of gravitya principle whose implications are still confounding physicists today. Starting with this winning anecdote, Anthony Zee begins his animated discussion of phenomena ranging from the emergence of galaxies to the curvature of space-time, evidence for the existence of gravity waves, and the shape of the universe in the first nanoseconds of creation and today. Making complex ideas accessible without oversimplifying, Zee leads the reader through the implications of Einstein's theory and its influence on modern physics. His playful and lucid style conveys the excitement of some of the latest developments in physics, and his new Afterword brings things even further up-to-date.
The greatest challenge in fundamental physics attempts to reconcile quantum mechanics and general relativity in a theory of "quantum gravity." The project suggests a profound revision of the notions of space, time and matter. It has become a key topic of debate and collaboration between physicists and philosophers. This volume collects classic and original contributions from leading experts in both fields for a provocative discussion of the issues. It contains accessible introductions to the main and less-well-known known approaches to quantum gravity. It includes exciting topics such as the fate of spacetime in various theories, the so-called "problem of time" in canonical quantum gravity, black hole thermodynamics, and the relationship between the interpretation of quantum theory and quantum gravity. This book will be essential reading for anyone interested in the profound implications of trying to marry the two most important theories in physics.
This volume presents Einstein's writings from the final period of his work in Switzerland. Most of the material in Volume 4 documents Einstein's search for a relativistic theory of gravitation, a search that ended in Berlin in the fall of 1915 with the completion of the general theory of relativity. Three scientific manuscripts, printed here for the first time, provide insight into Einstein's efforts to generalize his original relativity theory into a theory of gravitation. The first is a review article on the special theory of relativity. The second consists of notes that document Einstein's research on gravitation. The third manuscript contains calculations on the problem of the motion of the perihelion of Mercury. The explanation of the observed anomaly of this motion was to become one of the classical tests of general relativity. The existence of such a manuscript has not been known before now. All three of these manuscripts, along with other material in this volume, add significantly to our understanding of the creation of general relativity. This supplementary paperback volue presents only the English translations of non-English materials and is not intended for use without the original-language documentary edition.
Many people know that Einstein invented the theory of relativity, but only few have more than a superficial idea of its content. This book aims to explain the basic features of relativity in detail, emphasising the geometrical aspects by using a large number of diagrams, and assuming no knowledge of higher level mathematics.
Graduate students and researchers in astrophysics and cosmology need a solid grasp of a wide range of physical processes. This authoritative textbook helps readers develop the necessary toolkit of theory. The book is modular in design, allowing the reader to pick and chose a selection of chapters, if necessary. After reviewing the basics of dynamics, electromagnetic theory, and statistical physics, the book carefully develops a solid understanding of radiative processes, spectra, fluid mechanics, plasma physics and MHD, dynamics of gravitating systems, general relativity, nuclear physics, and other key concepts. Throughout, the reader's understanding is developed and tested with problems and helpful hints. This welcome volume provides graduate students with an indispensable introduction to and reference on all the physical processes they will need to successfully tackle cutting-edge research in astrophysics and cosmology. It can be used alone or in conjunction with two companion volumes, which cover stars and stellar systems, and galaxies and cosmology (both forthcoming). |
![]() ![]() You may like...
Relativity - The Special and The General…
Albert Einstein
Hardcover
Advances in Quantum Monte Carlo
James B Anderson, Stuart M. Rothstein
Hardcover
R2,781
Discovery Miles 27 810
Intrinsic Time Geometrodynamics: At One…
Chopin Soo, Hoi-lai Yu
Hardcover
R2,620
Discovery Miles 26 200
Do Wave Functions Jump? - Perspectives…
Valia Allori, Angelo Bassi, …
Hardcover
R3,823
Discovery Miles 38 230
|