![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Relativity physics
What happens when the country's greatest logician meets the century's greatest physicist? In the case of Kurt Godel and Albert Einstein the result in Godel's revolutioinary new model of the cosmos. In the 'Godel Universe' the philosophical fantasy of time travel becomes a scientific reality. For Godel, however, the reality of time travel signals the unreality of time. If Godel is right, the real meaning of the Einstein revolution had remained, for half a century, a secret. Now, half-century after Godel met Einstein, the real meaning of time travel in the Godel universe can be revealed.
Starting with the idea of an event and finishing with a description of the standard big-bang model of the Universe, this textbook provides a clear, concise and up-to-date introduction to the theory of general relativity, suitable for final-year undergraduate mathematics or physics students. Throughout, the emphasis is on the geometric structure of spacetime, rather than the traditional coordinate-dependent approach. This allows the theory to be pared down and presented in its simplest and most elegant form. Topics covered include flat spacetime (special relativity), Maxwell fields, the energy-momentum tensor, spacetime curvature and gravity, Schwarzschild and Kerr spacetimes, black holes and singularities, and cosmology. In developing the theory, all physical assumptions are clearly spelled out and the necessary mathematics is developed along with the physics. Exercises are provided at the end of each chapter and key ideas in the text are illustrated with worked examples. Solutions and hints to selected problems are also provided at the end of the book. This textbook will enable the student to develop a sound understanding of the theory of general relativity, and all the necessary mathematical machinery.
Professor Sir Roger Penrose's work, spanning fifty years of science, with over five thousand pages and more than three hundred papers, has been collected together for the first time and arranged chronologically over six volumes, each with an introduction from the author. Where relevant, individual papers also come with specific introductions or notes. Developing ideas sketched in the first volume, twistor theory is now applied to genuine issues of physics, and there are the beginnings of twistor diagram theory (an analogue of Feynman Diagrams). This collection includes joint papers with Stephen Hawking, and uncovers certain properties of black holes. The idea of cosmic censorship is also first proposed. Along completely different lines, the first methods of aperiodic tiling for the Euclidean plane that come to be known as Penrose tiles are described. This volume also contains Penrose's three prize-winning essays for the Gravity Foundation (two second places with both Ezra Newman and Steven Hawking, and a solo first place for 'The Non-linear graviton').
The Theory of Special Relativity is one of the most profound discoveries of the twentieth century. Einstein's Mirror blends a simple, nonmathematical account of the theory of special relativity and gravitation with a description of the way experiments have triumphantly supported these theories. The authors explore the many applications of relativity in atomic and nuclear physics, which are many and range from satellite navigation systems, particle accelerators and nuclear power to quantum chemistry, antimatter and black holes. The book also features a superb collection of photographs and includes amusing anecdotes and biographies about the early pioneers. In the closing chapter, the authors examine the influence of Einstein's relativity on the development of science fiction. General readers with an interest in science will enjoy and benefit from this fascinating and accessible introduction to one of the most important areas of physics.
Gitter messen, wenn WH dafUr ausschlieBlich geometrische Gebilde verwenden, wel che in diesem Gitter auch physikalisch existieren? Physikalische Objekte, die dafUr in Frage kommen, sind Versetzungen, welche in jedem Kristall in einer ungeheuer groBen Zahl vorhanden sind. Wir suchen dann einmal nach solchen, physikalisch stabilen Formen dieser Versetzungen, die geeignet sind, uns ein MaB fUr eine Lange zu liefern, sowie Ferner nach physikalisch stabilen, schwingenden Versetzungen, die uns eine Schwingungsdauer fUr eine Uhr hergeben. Dies gelingt mit einer sehr ge nau untersuchten Gleichung fUr Versetzungen in Kristallen, mit der sog. sine Gordon - Gleichung, fUr die wir eine denkbar einfache physikalische BegrUndung angeben konnen. Darauf aufbauend werden wir dann einen relativistischen Effekt nach dem andern entdecken, am Ende auch das Prinzip von der universellen Konstanz einer ausgezeichneten Signalgeschwindigkeit, welche hier auf dem Gitter definiert ist: Die Kontinuumsnaherung eines Kristallgitters wird als Modell einer relativistischen Raum - Zeit erkennbar. Die Grundidee, die zu dieser Reduktion der relativistischen Phanomene auf be grifflich leichter faBbare Aussagen fuhrt, laBt sich kurz so formulieren: FUr die physikalischen Konstituenten eines idealen Raumgitters postulieren wir die Axio matik der Newtonschen Mechanik. Aber erst die auf diesem Gitter existierenden, lokalen Abweichungen von der idealen Struktur (Konfigurationen von Versetzun gen im KristaII) besitzen in bezug auf dieses Gitter diejenigen tragen Massen, deren Bewegung wir beobachten und fUr deren Bewegung wir dann - innerhalb relativ leicht Uberschaubarer GUltigkeitsgrenzen - die Gesetze der SpezieIIen Relativitats theorie finden."
Basic to the entire theory and applications of black hole physics Global Aspects in Gravitation and Cosmology covers the topics needed to understand the current key issues in gravitation theory: cosmology and black holes. Emphasized is the basic theme that the very nature of the gravitational field is such that global features of space-time inevitably come into play whenever we try to understand and interpret this force in detail. After discussing the fundamental role played by global considerations in gravity and general relativity, Joshi points out the significant problems that remain. The key problem of which been the issue of quantum effects in strong gravity fields, an understanding of which is essential to formulate any quantum theory of gravity. This book will be beneficial to mathematicians and physicists.
Sidney Coleman (1937-2007) earned his doctorate at Caltech under Murray Gell-Mann. Before completing his thesis, he was hired by Harvard and remained there his entire career. A celebrated particle theorist, he is perhaps best known for his brilliant lectures, given at Harvard and in a series of summer school courses at Erice, Sicily. Three times in the 1960s he taught a graduate course on Special and General Relativity; this book is based on lecture notes taken by three of his students and compiled by the Editors.
This book is an introduction to gravitational waves and related astrophysics. It provides a bridge across the range of astronomy, physics and cosmology that comes into play when trying to understand the gravitational-wave sky. Starting with Einstein's theory of gravity, chapters develop the key ideas step by step, leading up to the technology that finally caught these faint whispers from the distant universe. The second part of the book makes a direct connection with current research, introducing the relevant language and making the involved concepts less mysterious. The book is intended to work as a platform, low enough that anyone with an elementary understanding of gravitational waves can scramble onto it, but at the same time high enough to connect readers with active research - and the many exciting discoveries that are happening right now. The first part of the book introduces the key ideas, following a general overview chapter and including a brief reminder of Einstein's theory. This part can be taught as a self-contained one semester course. The second part of the book is written to work as a collection of "set pieces" with core material that can be adapted to specific lectures and additional material that provide context and depth. A range of readers may find this book useful, including graduate students, astronomers looking for basic understanding of the gravitational-wave window to the universe, researchers analysing data from gravitational-wave detectors, and nuclear and particle physicists.
Enjoy Our Universe is a guide for an enjoyable visit to the Universe. The "Universe" refers to all "observable things," ranging in size from the entire cosmos to elementary particles. This small tome on fundamental physics, cosmology, Higgs bosons, time travel and all that, is unlike any other analogous book. Its scientific statements are correct or, at least, they coincide with the opinions held by the vast majority of experts. It establishes clear distinctions between things we know for sure - in the sense of having strong observational support for them - and things that we know that we do not know, or we do not understand. In this sense, it is scientifically honest. In descriptions of our Universe and of the way it functions, beauty is a recurring word. In an attempt to portray its beauty from the eyes of the beholder, the book is profusely illustrated. Its offbeat, tongue-in-cheek illustrations greatly enhance its readability, particularly in those chapters whose understanding, admittedly, requires a little extra effort. This book's idiosyncracies remind us of our own smallness and eccentricities even as we read about the logic, function and magnificence of the Universe.
The holy grail of theoretical physics is to find the theory of everything that combines all the forces of nature, including gravity. This book addresses the question: how far are we from such discovery? Over the last few decades, multiple roads to finding a quantum theory of gravity have been proposed but no obvious description of nature has emerged in this domain. What is to be made of this situation? This volume probes the state-of-the art in this daunting quest of theoretical physics by collecting critical interviews with nearly forty leading theorists in this field. These broad-ranging conversations give important insights and candid opinions on the various approaches to quantum gravity, including string theory, loop quantum gravity, causal set theory and asymptotic safety. This unique, readable overview provides a gateway into cutting edge research for students and others who wish to engage with the open problem of quantum gravity.
Do we need to reconsider scientific methodology in light of modern physics? Has the traditional scientific method become outdated, does it need to be defended against dangerous incursions, or has it always been different from what the canonical view suggests? To what extent should we accept non-empirical strategies for scientific theory assessment? Many core aspects of contemporary fundamental physics are far from empirically well-confirmed. There is controversy on the epistemic status of the corresponding theories, in particular cosmic inflation, the multiverse, and string theory. This collection of essays is based on the high profile workshop 'Why Trust a Theory?' and provides interdisciplinary perspectives on empirical testing in fundamental physics from leading physicists, philosophers and historians of science. Integrating different contemporary and historical positions, it will be of interest to philosophers of science and physicists, as well as anyone interested in the foundations of contemporary science.
This text is more conceptually and mathematically than experimentally orientated, elaborating on the underlying logic and dwelling on the subtleties and apparent paradoxes. In this updated edition additional examples and problems have been included.
Die Sprache und die Methoden der modernen Differentialgeometrie sind in der vergangenen Dekade immer mehr in die theoretische Physik eingedrungen. Was vor 15 Jahren, als das Buch zuerst als Vorlesungsskriptum herauskam, noch extravagant erschien, ist heute ein Gemeinplatz. Dies hat mich in der Ansicht gestarkt, dass die Studenten der theoretischen Physik diese Sprache lernen mussen, je eher desto besser. Schliesslich werden sie die Professoren des 21. Jahrhunderts sein und es ware absurd, wurden sie dann die Mathematik des 19. Jahrhunderts lehren. Daher habe ich in der neuen Auflage auf dieser Symbolik beharrt, einige Fehler korrigiert und ein Kapi- tel uber Eichtheorien hinzugefugt. Da es sich gezeigt hat, dass sie die fundamentalen Wechselwirkungen beschreiben und ihre Struktur zumindest auf dem klassischen Ni- veau hinreichend klar ist, scheinen sie mir zur Minimalausrustung zu gehoeren, uber die jeder Theoretiker verfugen muss. Mit Bedauern musste ich davon Abstand nehmen, die neueren Entwicklungen der Kosmologie und Kaluza-Klein-artige Theorien aufzu- nehmen, aber ich fuhlte mich an mein ursprungliches Versprechen gebunden, den Studenten keine theoretischen Spekulationen aufzuburden, fur die es keine sichere experimentelle Evidenz gibt. Vielen Physikern bin ich fur Hinweise bezuglich dieses Bandes sehr verpflichtet. Insbesondere P. Aichelburg, H. Rumpf und vor allem H. Urbantke haben zahlreiche Korrekturen und Verbesserungen angebracht. I. Dahl-Jensen sei dafur gedankt, dass sie manche nach Gefuhl angefertigte Zeichnungen mit dem Computer ins richtige Lot gebracht hat.
E=mc2 is the world's most famous equation. Discover the thought process and physics behind general relativity and Einstein's contribution to science, in this authorized edition. In this collection of his seven most important essays on physics, Einstein guides his reader step-by-step through the many layers of scientific theory that formed a starting point for his discoveries. By both supporting and refuting the theories and scientific efforts of his predecessors, Einstein reveals in a clear voice the origins and meaning of such significant topics as physics and reality, the fundamentals of theoretical physics, the common language of science, the laws of science and of ethics, and an elementary derivation of the equivalence of mass and energy. This remarkable collection allows the general reader to understand not only the significance of Einstein's masterpiece, but also the brilliant mind behind it. This authorized book features a new introduction by Neil Berger and an illustrated biography of Albert Einstein, which includes rare photos and never-before-seen documents from the Albert Einstein Archives at the Hebrew University of Jerusalem.
In den letzten Dekaden hat das Gebiet der klassischen dynamischen Systeme eine beachtliche Renaissance erlebt, und manches, was beim erst en Erscheinen dieses Kur- ses als mathematisch zu hochgestochen erschien, ist heute Gemeingut der aktiven Physiker geworden. Das Ziel der Neuauflage ist es, . dieser Entwicklung zu dienen, indem ich versucht habe, das Buch leserfreundlicher zu gestalten und Fehler auszu- merzen. Da schon die erste Auflage ffir eine einsemestrige Vorlesung reichlich beladen war, wurde neues Material nur in dem Mafie aufgenommen, als anderes weggelassen oder vereinfacht werden konnte. Eine Erweiterung muf3te jedoch das Kapitel mit dem Be- weis des KAM-Satzes erfahren, urn dem neuen Trend in der Physik Rechnung zu tragen. Dieser besteht nicht nur in der Verwendung feinerer mathematischer Hilfs- mittel, sondern auch in einer Neubewertung des Wortes "fundamental". Was frfiher als Schmutzeffekt abgetan wurde, erscheint heute als Folge eines tieferen Prinzips. Ja so- gar diese Keplerschen Gesetze, welche die Radien der Planetenbahnen bestimmen und die man als mystischen Unsinn gerne verschwieg, scheinen in Richtung einer Wahrheit zu deuten, die sich oberflachlicher Betrachtung verschlief3t: SchachteluI). g vollkomme- ner platonischer Korper ffihrt zu Verhaltnissen von Radien, die irrational sind, aber algebraischen Gleichungen niederer Ordnung genfigen. Gerade solche Irrationalzahlen lassen sich am schlechtesten durch rationale approximieren, und Bahnen mit diesem Radiusverhaltnis sind gegenfiber gegenseitigen Storungen am robustesten, da sie am wenigsten unter Resonanzeffekten leiden. In letzter Zeit wurden einige fiberraschende Resultate fiber chaotische Systeme gefunden, doch hat ten deren Beweise leider den Rahmen dieses Buches gesprengt und muf3ten unterbleiben.
Covariant Physics: From Classical Mechanics to General Relativity and Beyond endeavours to provide undergraduate students as well as self-learners with training in the fundamentals of the modern theories of spacetime, most notably the general theory of relativity as well as physics in curved spacetime backgrounds in general. This text does so with the barest of mathematical preparation. In fact, very little beyond multivariable calculus and a bit of linear algebra is assumed. Throughout this textbook, the main theme tying the various topics is the so-called principle of covariance - a fundamental symmetry of physics that one rarely encounters in undergraduate texts. The material is introduced very gradually, starting with the simplest of high school mathematics, and moving through the more intense notions of tensor calculus, geometry, and differential forms with ease. Familiar notions from classical mechanics and electrodynamics are used to increase familiarity with the advanced mathematical ideas, and to emphasize the unity of all of physics under the single principle of covariance. The mathematical and physical techniques developed in this book should allow students to perform research in various fields of theoretical physics as early as their sophomore year in college. The language the reader will learn in this book is the foundational mathematical language of many modern branches of physics, and as such should allow them to read and generally understand many modern physics papers.
Classical electromagnetism - one of the fundamental pillars of physics - is an important topic for all types of physicists from the theoretical to the applied. The subject is widely recognized to be one of the most challenging areas of the physics curriculum, both for students to learn and for lecturers to teach. Although textbooks on electromagnetism are plentiful, hardly any are written in the question-and-answer style format adopted in this book. It contains nearly 300 worked questions and solutions in classical electromagnetism, and is based on material usually encountered during the course of a standard university physics degree. Topics covered include some of the background mathematical techniques, electrostatics, magnetostatics, elementary circuit theory, electrodynamics, electromagnetic waves and electromagnetic radiation. For the most part the book deals with the microscopic theory, although we also introduce the important subject of macroscopic electromagnetism as well. Nearly all questions end with a series of comments whose purpose is to stimulate inductive reasoning and reach various important conclusions arising from the problem. Occasionally, points of historical interest are also mentioned. Both analytical and numerical techniques are used in obtaining and analyzing solutions. All computer calculations are performed with MathematicaCO (R) and the relevant code is provided in a notebook; either in the solution or the comments.
Relativity, almost a hundred years old in its classic Einsteinian form, is one of the most fascinating threads running through science from Galileo’s day to ours. This book, based on a short course at the University of Sussex, presents relativity as a natural outgrowth of dynamics: the concepts are introduced through careful physical reasoning and simple mathematics, and are then applied over a wide range, well meshed with current undergraduate syllabuses. Features
Now in paperback, this volume presents Albert Einstein's 1912 manuscript on the special theory of relativity, one of the most revolutionary and influential scientific documents of the twentieth century. It includes faithful reproductions of each of the seventy-two handwritten pages along with an English translation of the original German text. A tribute to Einstein's genius, the book opens with a brief essay by Hanoch Gutfreund, a chronology of Einstein's life, a selection of quotes by Einstein, and, to introduce the manuscript, a detailed description of the manuscript, its contents, publication history, and provenance. The manuscript pages themselves then follow, reproduced in full colour, with the English translation facing each page. Subtle variations in paper and ink are clearly visible in the excellent reproductions, indicating where and when Einstein drafted certain parts of it. Because the manuscript shows extensive reworking, it reveals Einstein's thought processes more than any other of his handwritten works. Einstein's 1912 Manuscript provides a glimpse into one of the greatest minds of the last century.
This textbook develops Special Relativity in a systematic way and offers problems with detailed solutions to empower students to gain a real understanding of this core subject in physics. This new edition has been thoroughly updated and has new sections on relativistic fluids, relativistic kinematics and on four-acceleration. The problems and solution section has been significantly expanded and short history sections have been included throughout the book. The approach is structural in the sense that it develops Special Relativity in Minkowski space following the parallel steps as the development of Newtonian Physics in Euclidian space. A second characteristic of the book is that it discusses the mathematics of the theory independently of the physical principles, so that the reader will appreciate their role in the development of the physical theory. The book is intended to be used both as a textbook for an advanced undergraduate teaching course in Special Relativity but also as a reference book for the future.
|
![]() ![]() You may like...
Every Day Is An Opening Night - Our…
Des & Dawn Lindberg
Paperback
![]()
Prospects for Alternative Energy…
John C. Pierce, Brent S. Steel
Hardcover
|