![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Relativity physics
The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology and the physics of the Big Bang and inflation.
General relativity is a cornerstone of modern physics, and is of major importance in its applications to cosmology. Plebanski and Krasinski are experts in the field and in this book they provide a thorough introduction to general relativity, guiding the reader through complete derivations of the most important results. Providing coverage from a unique viewpoint, geometrical, physical and astrophysical properties of inhomogeneous cosmological models are all systematically and clearly presented, allowing the reader to follow and verify all derivations. For advanced undergraduates and graduates in physics and astronomy, this textbook will enable students to develop expertise in the mathematical techniques necessary to study general relativity.
Black holes are one of the most remarkable predictions of Einstein's general relativity. In recent years, ideas in brane-world cosmology, string theory and gauge/gravity duality have motivated studies of black holes in more than four dimensions, with surprising results. In higher dimensions, black holes exist with exotic shapes and unusual dynamics. Edited by leading expert Gary Horowitz, this exciting book is the first devoted to this new field. The major discoveries are explained by the people who made them: Rob Myers describes the Myers-Perry solutions that represent rotating black holes in higher dimensions; Ruth Gregory describes the Gregory-Laflamme instability of black strings; and Juan Maldacena introduces gauge/gravity duality, the remarkable correspondence that relates a gravitational theory to nongravitational physics. Accessible to anyone with a standard course in general relativity, this is an important resource for graduate students and researchers in general relativity, string theory and high energy physics.
This book provides an accessible introduction to loop quantum
gravity and some of its applications, at a level suitable for
undergraduate students and others with only a minimal knowledge of
college level physics. In particular it is not assumed that the
reader is familiar with general relativity and only minimally
familiar with quantum mechanics and Hamiltonian mechanics. Most
chapters end with problems that elaborate on the text, and aid
learning. Applications such as loop quantum cosmology, black hole
entropy and spin foams are briefly covered. The text is ideally
suited for an undergraduate course in the senior year of a physics
major. It can also be used to introduce undergraduates to general
relativity and quantum field theory as part of a 'special topics'
type of course.
Alfred North Whitehead (1861-1947) was a prominent English mathematician and philosopher who co-authored the highly influential Principia Mathematica with Bertrand Russell. Originally published in 1922, this book forms the follow-up volume to The Principles of Natural Knowledge (1919) and The Concept of Nature (1920). In it, Whitehead puts forward an alternative theory of relativity, one which goes against the heterogeneity of Einstein's later theories in deducing that 'our experience requires and exhibits a basis in uniformity'. The text is divided into three parts - 'General Principles', 'Physical Applications', and 'Elementary Theory of Tensors' - and exhibits a characteristically ambitious approach in mixing various academic disciplines. This is a fascinating book that will be of value to anyone with an interest in natural science, physics, and philosophy, together with the history of science.
First published in 1989, this book is comprised of invited contributions from speakers at the international workshop, Frontiers in Numerical Relativity, held at the University of Illinois, Urbana-Champaign, in May 1988. Advances in supercomputer technology and computational algorithms have stimulated rapid progress in attempts to understand, through numerical means, such diverse phenomena as gravitational radiation emission from astrophysical sources, the evolution of inhomogenous cosmologies and its effects on nucleosynthesis, cosmic string interactions, the formation of 'naked singularities' and the cosmic censorship conjecture and the dynamics of black holes. The book should be of interest to researchers and graduate students in the field of general relativity, astrophysics and applied numerical analysis who wish to understand developments in computer studies of general relativity at the time of publication.
This 1985 book consists of essays reviewing progress or reporting original results in areas of the applications of gravity theory to which Professor Bonnor had contributed. In particular, the influence of his work in two important fields of interest to astonomers, physicists and mathematicians, galaxy formation and the study of axisymmetric solutions in general relativity, is well recognised. The essays on galaxies and astrophysical cosmology are related to Professor Bonnor's work on the treatment of perturbations of uniform cosmological models, while the essays on axisymmetric solutions reflect the concerns of his long series of papers on the subject, which began with generating techniques and went on to deal with interpretation of the solutions obtained. In addition there is a number of essays on other topics in gravity theory, including numerical work, mathematical cosmology and gravitational waves.
Ever since its infancy, humankind has been seeking answers to some very basic and profound questions. Did the Universe begin? If it did, how old is it, and where did it come from? What is its shape? What is it made of? Fascinating myths and brilliant in- itions attempting to solve such enigmas can be found all through the history of human thought. Every culture has its own legends, itsownworldcreationtales, itsphilosophicalspeculations, itsre- gious beliefs. Modern science, however, cannot content itself with fanciful explanations, no matter how suggestive they are. No- days, our theories about the Universe, built upon rational ded- tion, have to survive the hard test of experiment and observation. Cosmology, the science which studies the origin and evo- tion of the Universe, had to overcome enormous dif?culties before it could achieve the same level of dignity as other physical dis- plines. At ?rst, it had no serious physical model and mathematical tools that could be used to address the complexity of the problems it had to face. Then, it suffered from a chronic lack of experim- tal data, which made it almost impossible to test the theoretical speculations. Given this situation, answering rigorously the many questions on the nature of the Universe seemed nothing more than a delusion. Today, however, things have changed. We live in the golden age of cosmology: an exciting moment, when, for the ?rst time, we are able to scienti?cally understand our Univers
This book introduces the general theory of relativity and includes applications to cosmology. The book provides a thorough introduction to tensor calculus and curved manifolds. After the necessary mathematical tools are introduced, the authors offer a thorough presentation of the theory of relativity. Also included are some advanced topics not previously covered by textbooks, including Kaluza-Klein theory, Israel's formalism and branes. Anisotropic cosmological models are also included. The book contains a large number of new exercises and examples, each with separate headings. The reader will benefit from an updated introduction to general relativity including the most recent developments in cosmology.
Ebenezer Cunningham was a British mathematician and Cambridge graduate with an intense interest in the theory of special relativity, a subject that was just beginning to be recognised as he wrote. This book, first published by Cambridge University Press in 1914, was one of the first treatises in the English language to focus on special relativity. Its publication firmly established Cunningham as one of the greatest minds in the field. Within this volume, Cunningham firstly offers the reader a preface contextualising the progress of the study of relativity thus far. His chapters then process to relate relativity to existing physical theory, expanding on the relativity of Newtonian dynamics, electron theory and theories of Albert Einstein amongst others. This book is thoroughly and engagingly written, and promises to fascinate all those with an interest in the early study of special relativity.
It is commonly assumed that if the Sun suddenly turned into a black hole, it would suck Earth and the rest of the planets into oblivion. Yet, as prominent author and astrophysicist Jeffrey Bennett points out, black holes don't suck. With that simple idea in mind, Bennett begins an entertaining introduction to Einstein's theories of relativity, describing the amazing phenomena readers would actually experience if they took a trip to a black hole. The theory of relativity reveals the speed of light as the cosmic speed limit, the mind-bending ideas of time dilation and curvature of spacetime, and what may be the most famous equation in history: E = mc2. Indeed, the theory of relativity shapes much of our modern understanding of the universe. It is not "just a theory"-every major prediction of relativity has been tested to exquisite precision, and its practical applications include the Global Positioning System (GPS). Amply illustrated and written in clear, accessible prose, Bennett's book proves anyone can grasp the basics of Einstein's ideas. His intuitive, nonmathematical approach gives a wide audience its first real taste of how relativity works and why it is so important to science and the way we view ourselves as human beings.
This book has its roots in a series of collaborations in the last decade at the interface between statistical physics and cosmology. The speci?c problem which initiated this research was the study of the clustering properties of galaxies as revealed by large redshift surveys, a context in which concepts of modern statistical physics (e. g. scale-invariance, fractality. . ) ?nd ready application. In recent years we have considerably broadened the range of problems in cosmology which we have addressed, treating in particular more theoretical issues about the statistical properties of standard cosmological models. What is common to all this research, however, is that it is informed by a perspective and methodology which is that of statistical physics. We can say that, beyond its speci?c scienti?c content, this book has an underlying thesis: such interdisciplinary research is an exciting playground for statistical physics, and one which can bring new and useful insights into cosmology. The book does not represent a ?nal point, but in our view, a marker in the development of this kind of research, which we believe can go very much further in the future. Indeed as we complete this book, new developments - which unfortunately we have not been able to include here - have been made on some of the themes described here. Our focus in this book is on the problem of structure in cosmology.
Aimed at advanced undergraduates with background knowledge of classical mechanics and electricity and magnetism, this textbook presents both the particle dynamics relevant to general relativity, and the field dynamics necessary to understand the theory. Focusing on action extremization, the book develops the structure and predictions of general relativity by analogy with familiar physical systems. Topics ranging from classical field theory to minimal surfaces and relativistic strings are covered in a homogeneous manner. Nearly 150 exercises and numerous examples throughout the textbook enable students to test their understanding of the material covered. A tensor manipulation package to help students overcome the computational challenge associated with general relativity is available on a site hosted by the author. A link to this and to a solutions manual can be found at www.cambridge.org/9780521762458.
Dark energy, the mysterious cause of the accelerating expansion of the universe, is one of the most important fields of research in astrophysics and cosmology today. Introducing the theoretical ideas, observational methods and results, this textbook is ideally suited to graduate courses on dark energy, and will also supplement advanced cosmology courses. Providing a thorough introduction to this exciting field, the textbook covers the cosmological constant, quintessence, k-essence, perfect fluid models, extra-dimensional models, and modified gravity. Observational research is reviewed, from the cosmic microwave background to baryon acoustic oscillations, weak lensing and cluster abundances. Every chapter ends with problems, with full solutions provided, and any calculations are worked through step-by-step.
Most astronomers and physicists now believe that the matter content of the Universe is dominated by dark matter: hypothetical particles which interact with normal matter primarily through the force of gravity. Though invisible to current direct detection methods, dark matter can explain a variety of astronomical observations. This book describes how this theory has developed over the past 75 years, and why it is now a central feature of extragalactic astronomy and cosmology. Current attempts to directly detect dark matter locally are discussed, together with the implications for particle physics. The author comments on the sociology of these developments, demonstrating how and why scientists work and interact. Modified Newtonian Dynamics (MOND), the leading alternative to this theory, is also presented. This fascinating overview will interest cosmologists, astronomers and particle physicists. Mathematics is kept to a minimum, so the book can be understood by non-specialists.
Covering all aspects of gravitation in a contemporary style, this advanced textbook is ideal for graduate students and researchers in all areas of theoretical physics. The 'Foundation' section develops the formalism in six chapters, and uses it in the next four chapters to discuss four key applications - spherical spacetimes, black holes, gravitational waves and cosmology. The six chapters in the 'Frontier' section describe cosmological perturbation theory, quantum fields in curved spacetime, and the Hamiltonian structure of general relativity, among several other advanced topics, some of which are covered in-depth for the first time in a textbook. The modular structure of the book allows different sections to be combined to suit a variety of courses. Over 200 exercises are included to test and develop the reader's understanding. There are also over 30 projects, which help readers make the transition from the book to their own original research.
This volume presents the lectures of the nineteenth Canary Islands Winter School, dedicated to the Cosmic Microwave Background (CMB). This relict radiation from the very early Universe provides a fundamental tool for precision cosmology. Prestigious researchers in the field present a comprehensive overview of current knowledge of the CMB, reviewing the theoretical foundations, the main observational results and the most advanced statistical techniques used in this discipline. The lectures give coverage from the basic principles to the most recent research results, reviewing state of the art observational and statistical analysis techniques. The impact of new experiments and the constraints imposed on cosmological parameters are emphasized and put into the broader context of research in cosmology. This is an important resource for both graduate students and experienced researchers, revealing the spectacular progress that has been made in the study of the CMB within the last decade.
Bradford Skow presents an original defense of the 'block universe' theory of time, often said to be a theory according to which time does not pass. Along the way, he provides in-depth discussions of alternative theories of time, including those in which there is 'robust passage' of time or 'objective becoming': presentism, the moving spotlight theory of time, the growing block theory of time, and the 'branching time' theory of time. Skow explains why the moving spotlight theory is the best of these arguments, and rebuts several popular arguments against the thesis that time passes. He surveys the problems that the special theory of relativity has been thought to raise for objective becoming, and suggests ways in which fans of objective becoming may reconcile their view with relativistic physics. The last third of the book aims to clarify and evaluate the argument that we should believe that time passes because, somehow, the passage of time is given to us in experience. He isolates three separate arguments this idea suggests, and explains why they fail.
Presenting the history of space-time physics, from Newton to Einstein, as a philosophical development DiSalle reflects our increasing understanding of the connections between ideas of space and time and our physical knowledge. He suggests that philosophy's greatest impact on physics has come about, less by the influence of philosophical hypotheses, than by the philosophical analysis of concepts of space, time and motion, and the roles they play in our assumptions about physical objects and physical measurements. This way of thinking leads to interpretations of the work of Newton and Einstein and the connections between them. It also offers ways of looking at old questions about a priori knowledge, the physical interpretation of mathematics, and the nature of conceptual change. Understanding Space-Time will interest readers in philosophy, history and philosophy of science, and physics, as well as readers interested in the relations between physics and philosophy.
A graduate level text on a subject which brings together several areas of mathematics and physics: partial differential equations, differential geometry and general relativity. It explains the basics of the theory of partial differential equations in a form accessible to physicists and the basics of general relativity in a form accessible to mathematicians. In recent years the theory of partial differential equations has come to play an ever more important role in research on general relativity. This is partly due to the growth of the field of numerical relativity, stimulated in turn by work on gravitational wave detection, but also due to an increased interest in general relativity among pure mathematicians working in the areas of partial differential equations and Riemannian geometry, who have realized the exceptional richness of the interactions between geometry and analysis which arise. This book provides the background for those wishing to learn about these topics. It treats key themes in general relativity including matter models and symmetry classes and gives an introduction to relevant aspects of the most important classes of partial differential equations, including ordinary differential equations, and material on functional analysis. These elements are brought together to discuss a variety of important examples in the field of mathematical relativity, including asymptotically flat spacetimes, which are used to describe isolated systems, and spatially compact spacetimes, which are of importance in cosmology.
Quantum gravity is perhaps the most important open problem in fundamental physics. It is the problem of merging quantum mechanics and general relativity, the two great conceptual revolutions in the physics of the twentieth century. The loop and spinfoam approach, presented in this 2004 book, is one of the leading research programs in the field. The first part of the book discusses the reformulation of the basis of classical and quantum Hamiltonian physics required by general relativity. The second part covers the basic technical research directions. Appendices include a detailed history of the subject of quantum gravity, hard-to-find mathematical material, and a discussion of some philosophical issues raised by the subject. This fascinating text is ideal for graduate students entering the field, as well as researchers already working in quantum gravity. It will also appeal to philosophers and other scholars interested in the nature of space and time.
This 2004 textbook fills a gap in the literature on general relativity by providing the advanced student with practical tools for the computation of many physically interesting quantities. The context is provided by the mathematical theory of black holes, one of the most elegant, successful, and relevant applications of general relativity. Among the topics discussed are congruencies of timelike and null geodesics, the embedding of spacelike, timelike and null hypersurfaces in spacetime, and the Lagrangian and Hamiltonian formulations of general relativity. Although the book is self-contained, it is not meant to serve as an introduction to general relativity. Instead, it is meant to help the reader acquire advanced skills and become a competent researcher in relativity and gravitational physics. The primary readership consists of graduate students in gravitational physics. It will also be a useful reference for more seasoned researchers working in this field.
Special relativity is one of the high points of the undergraduate mathematical physics syllabus. Nick Woodhouse writes for those approaching the subject with a background in mathematics: he aims to build on their familiarity with the foundational material and the way of thinking taught in first-year mathematics courses, but not to assume an unreasonable degree of prior knowledge of traditional areas of physical applied mathematics, particularly electromagnetic theory. His book provides mathematics students with the tools they need to understand the physical basis of special relativity and leaves them with a confident mathematical understanding of Minkowski's picture of space-time. Special Relativity is loosely based on the tried and tested course at Oxford, where extensive tutorials and problem classes support the lecture course. This is reflected in the book in the large number of examples and exercises, ranging from the rather simple through to the more involved and challenging. The author has included material on acceleration and tensors, and has written the book with an emphasis on space-time diagrams. Written with the second year undergraduate in mind, the book will appeal to those studying the 'Special Relativity' option in their Mathematics or Mathematics and Physics course. However, a graduate or lecturer wanting a rapid introduction to special relativity would benefit from the concise and precise nature of the book.
The scalar-tensor theory of gravitation is one of the most popular alternatives to Einstein's theory of gravitation. This book provides a clear and concise introduction to the theoretical ideas and developments, exploring scalar fields and placing them in context with a discussion of Brans-Dicke theory. Topics covered include the cosmological constant problem, time variability of coupling constants, higher dimensional space-time, branes and conformal transformations. The authors emphasize the physical applications of the scalar-tensor theory and thus provide a pedagogical overview of the subject, keeping more mathematically detailed sections for the appendices. This book is suitable for graduate courses in cosmology, gravitation and relativity. It will also provide a valuable reference for researchers. |
![]() ![]() You may like...
William Wallace - A Captivating Guide to…
Captivating History
Hardcover
The Monastic Constitutions of Lanfranc
Dom David Knowles, C. N. L. Brooke
Hardcover
|