![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > Robotics
This edited book comprises papers about the impacts, benefits and challenges of connected and automated cars. It is the third volume of the LNMOB series dealing with Road Vehicle Automation. The book comprises contributions from researchers, industry practitioners and policy makers, covering perspectives from the U.S., Europe and Japan. It is based on the Automated Vehicles Symposium 2015 which was jointly organized by the Association of Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Ann Arbor, Michigan, in July 2015. The topical spectrum includes, but is not limited to, public sector activities, human factors, ethical and business aspects, energy and technological perspectives, vehicle systems and transportation infrastructure. This book is an indispensable source of information for academic researchers, industrial engineers and policy makers interested in the topic of road vehicle automation.
Machines will gradually become programmed using computers which have the knowledge of how the objects in the world relate to one another. This book capitalizes on the fact that products which are manufactured can be designed on the computer and that information about the product such as its physical shape provide powerful information to reason about how to develop the process plan for their manufacture. This book explores the whole aspect of using the principles of how parts behave naturally to automatically generate programs that govern how to produce them. The last decade saw tremendous work on how machines can be programmed to perform a variety of tasks automatically. Robotics has witnessed the most work on programming techniques. But it was not until the emergence of the advanced CAD system as a proper source of information representation about objects which are to be manipulated by the robot that it became viable for automated processors to generate robot programs without human interface. It became possible for objects to be described and for principles about how they interact in the world to be developed. The functions which the features designed into the objects serve for the objects can be adequately represented and used in reasoning about the manufacturing of the parts using the robot. This book describes the necessary principles which must be developed for a robot to generate its own programs with the knowledge of the world in the CAD system.
Creating Precision Robots: A Project-Based Approach to the Study of Mechatronics and Robotics shows how to use a new "Cardboard Engineering" technique for the handmade construction of three precision microcomputer controlled robots that hit, throw and shoot. Throughout the book, the authors ensure that mathematical concepts and physical principles are not only rigorously described, but also go hand-in-hand with the design and constructional techniques of the working robot. Detailed theory, building plans and instructions, electric circuits and software algorithms are also included, along with the importance of tolerancing and the correct use of numbers in programming. The book is designed for students and educators who need a detailed description, mathematical analysis, design solutions, engineering drawings, electric circuits and software coding for the design and construction of real bench-top working robots.
Multimodal Perception and Secure State Estimation for Robotic Mobility Platforms Enables readers to understand important new trends in multimodal perception for mobile robotics This book provides a novel perspective on secure state estimation and multimodal perception for robotic mobility platforms such as autonomous vehicles. It thoroughly evaluates filter-based secure dynamic pose estimation approaches for autonomous vehicles over multiple attack signals and shows that they outperform conventional Kalman filtered results. As a modern learning resource, it contains extensive simulative and experimental results that have been successfully implemented on various models and real platforms. To aid in reader comprehension, detailed and illustrative examples on algorithm implementation and performance evaluation are also presented. Written by four qualified authors in the field, sample topics covered in the book include: Secure state estimation that focuses on system robustness under cyber-attacks Multi-sensor fusion that helps improve system performance based on the complementary characteristics of different sensors A geometric pose estimation framework to incorporate measurements and constraints into a unified fusion scheme, which has been validated using public and self-collected data How to achieve real-time road-constrained and heading-assisted pose estimation This book will appeal to graduate-level students and professionals in the fields of ground vehicle pose estimation and perception who are looking for modern and updated insight into key concepts related to the field of robotic mobility platforms.
Wearable Technology in Medicine and Health Care provides readers with the most current research and information on the clinical and biomedical applications of wearable technology. Wearable devices provide applicability and convenience beyond many other means of technical interface and can include varying applications, such as personal entertainment, social communications and personalized health and fitness. The book covers the rapidly expanding development of wearable systems, thus enabling clinical and medical applications, such as disease management and rehabilitation. Final chapters discuss the challenges inherent to these rapidly evolving technologies.
This book encompasses the study of hybrid switching di usion processes and their applications. The word \hybrid" signi es the coexistence of c- tinuous dynamics and discrete events, which is one of the distinct features of the processes under consideration. Much of the book is concerned with the interactions of the continuous dynamics and the discrete events. Our motivations for studying such processes originate from emerging and - isting applications in wireless communications, signal processing, queueing networks, production planning, biological systems, ecosystems, nancial engineering, and modeling, analysis, and control and optimization of lar- scale systems, under the in uence of random environments. Displaying mixture distributions, switching di usions may be described by the associated operators or by systems of stochastic di erential eq- tions together with the probability transition laws of the switching actions. We either have Markov-modulated switching di usions or processes with continuous state-dependent switching. The latter turns out to be much more challenging to deal with. Viewing the hybrid di usions as a number of di usions joined together by the switching process, they may be se- ingly not much di erent from their di usion counterpart. Nevertheless, the underlying problems become more di cult to handle, especially when the switching processes depend on continuous states. The di culty is due to the interaction of the discrete and continuous processes and the tangled and hybrid information pattern.
This book presents the theoretical research and application results of a study on flexible mechatronics (flexonics). Formulating distributed models in both time and spatial domains using a geometric approach, it presents a simple yet practical field-based sensing method for robotics and manufacturing, and illustrates its applications with examples such as exoskeletons, mobile sensor network and intelligent sensing.The book is of interest to researchers, engineers and graduate students in robotics, manufacturing and automation engineering who wish to learn the core principles, theories, technologies, and applications of flexonics.
Human Inspired Dexterity in Robotic Manipulation provides up-to-date research and information on how to imitate humans and realize robotic manipulation. Approaches from both software and hardware viewpoints are shown, with sections discussing, and highlighting, case studies that demonstrate how human manipulation techniques or skills can be transferred to robotic manipulation. From the hardware viewpoint, the book discusses important human hand structures that are key for robotic hand design and how they should be embedded for dexterous manipulation. This book is ideal for the research communities in robotics, mechatronics and automation.
Cooperative and Graph Signal Processing: Principles and Applications presents the fundamentals of signal processing over networks and the latest advances in graph signal processing. A range of key concepts are clearly explained, including learning, adaptation, optimization, control, inference and machine learning. Building on the principles of these areas, the book then shows how they are relevant to understanding distributed communication, networking and sensing and social networks. Finally, the book shows how the principles are applied to a range of applications, such as Big data, Media and video, Smart grids, Internet of Things, Wireless health and Neuroscience. With this book readers will learn the basics of adaptation and learning in networks, the essentials of detection, estimation and filtering, Bayesian inference in networks, optimization and control, machine learning, signal processing on graphs, signal processing for distributed communication, social networks from the perspective of flow of information, and how to apply signal processing methods in distributed settings.
This book presents the work of the RILEM Technical Committee 276-DFC: Digital fabrication with cement-based materials. The most important outcomes of the technical committee are presented. First, a unified process classification for digital fabrication with concrete is proposed, discussed and illustrated. Then, a state of the art of the testing methods (both at a material and structural level and in the fresh and hardened state) is provided. The gathered knowledge is expected to form the foundation of some quality control procedures for fresh properties along with hardened properties and service life performance. The book will benefit academics, practitioners, industry and standardization committees interested in digital fabrication with cement-based materials.
Walking machines have potential advantages over traditional vehicles, and they have already succeeded in carrying out many tasks that wheeled or tracked robots cannot handle. Nevertheless, their use in industry and services is currently limited in scope. Quadrupedal Locomotion: An Introduction to the Control of Four-legged Robots brings together some of the methods and techniques in this emerging field that have recently been developed in an effort to deal with the problems that currently prevent legged robots being more widely used for real applications. Quadrupedal Locomotion: An Introduction to the Control of Four-legged Robots illustrates the appropriate algorithms and methods through a discussion of simulation and experiments that have been tested on a real machine, the SILO4 walking robot. Data from the experiments can be found on-line at http: //www.iai.csic.es/users/silo4/. This book is divided into two parts: the first part, Walking Measurements and Algorithms, introduces the historical development of quadrupeds, their advantages/disadvantages and potential uses, and the trade-off between quadrupeds and hexapods. The second part, Control Techniques, concentrates on general techniques that have been specifically applied to legged robots, including kinematic and dynamic models, soft computing techniques to increase speed, virtual sensors that help reduce the electronic burden of the machine, and software simulators to study and test certain robot properties. As the first book to focus specifically on quadrupeds, Quadrupedal Locomotion: An Introduction to the Control of Four-legged Robots will be suitable for researchers, postgraduates and senior undergraduates inthe field of robotics as well as engineers working in industry.
Novel perspectives on machine behaviour as it relates to behavioural science. A framework of terminology to empower discussion of AI within behavioural science. A compelling definition of hypernudging developed from AI and behavioural science principles.
Underwater robots play a significant role in ocean exploration. This book provides full coverage of the theoretical and practical aspects of bionic gliding underwater robots, including system design, modeling control, and motion planning. To overcome the inherent shortcomings of traditional underwater robots that can simultaneously lack maneuverability and endurance, a new type of robot, the bionic gliding underwater robot, has attracted much attention from scientists and engineers. On the one hand, by imitating the appearance and swimming mechanisms of natural creatures, bionic gliding underwater robots achieve high maneuverability, swimming efficiency, and strong concealment. On the other hand, borrowing from the buoyancy adjustment systems of underwater gliders, bionic gliding underwater robots can obtain strong endurance, which is significant in practical applications. Taking gliding robotic dolphin and fish as examples, the designed prototypes and proposed methods are discussed, offering valuable insights into the development of next-generation underwater robots that are well suited for various oceanic applications. This book will be of great interest to students and professionals alike in the field of robotics or intelligent control. It will also be a great reference for engineers or technicians who deal with the development of underwater robots.
This book presents the current state of the problem of describing the musculoskeletal system of a person. Models of the destruction of the endoskeleton and the restoration of its functions using exoskeleton are presented. A description is given of new approaches to modeling based on the use of weightless rods of variable length with concentrated masses. The practical application to the tasks of numerical simulation of the movements of the musculoskeletal system of a person is described. Exoskeleton models with variable-length units based on absolutely hard sections and sections that change their telescopic type length have been developed. The book is intended for specialists in the field of theoretical mechanics, biomechanics, robotics and related fields. The book will be useful to teachers, as well as graduate students, undergraduates and senior students of higher educational institutions, whose research interests lie in the modeling of anthropomorphic biomechanical systems.
Computer Vision for Assistive Healthcare describes how advanced computer vision techniques provide tools to support common human needs, such as mental functioning, personal mobility, sensory functions, daily living activities, image processing, pattern recognition, machine learning and how language processing and computer graphics cooperate with robotics to provide such tools. Users will learn about the emerging computer vision techniques for supporting mental functioning, algorithms for analyzing human behavior, and how smart interfaces and virtual reality tools lead to the development of advanced rehabilitation systems able to perform human action and activity recognition. In addition, the book covers the technology behind intelligent wheelchairs, how computer vision technologies have the potential to assist blind people, and about the computer vision-based solutions recently employed for safety and health monitoring.
This book covers a variety of problems, and offers solutions to some, in: Statistical state and parameter estimation in nonlinear stochastic dynamical system in both the classical and quantum scenarios Propagation of electromagnetic waves in a plasma as described by the Boltzmann Kinetic Transport Equation Classical and Quantum General Relativity It will be of use to Engineering undergraduate students interested in analysing the motion of robots subject to random perturbation, and also to research scientists working in Quantum Filtering.
In recent years, drones have been integrated with the Internet of Things to offer a variety of exciting new applications. Here is a detailed exploration of adapting and implementing Internet of Drones technologies in real-world applications, emphasizing solutions to architectural challenges and providing a clear overview of standardization and regulation, implementation plans, and privacy concerns. The book discusses the architectures and protocols for drone communications, implementing and deploying of 5G-drone setups, security issues, deep learning techniques applied on real-time footage, and more. It also explores some of the varied applications, such as for monitoring and analysis of troposphere pollutants, providing services and communications in smart cities (such as for weather forecasting, communications, transport, safety and protection), for disaster relief management, for agricultural crop monitoring, and more.
This book systematically introduces the bionic nature of force sensing and control, the biomechanical principle on mechanism of force generation and control of skeletal muscle, and related applications in robotic exoskeleton. The book focuses on three main aspects: muscle force generation principle and biomechanical model, exoskeleton robot technology based on skeletal muscle biomechanical model, and SMA-based bionic skeletal muscle technology. This comprehensive and in-depth book presents the author's research experience and achievements of many years to readers in an effort to promote academic exchanges in this field. About the Author Yuehong Yin received his B.E. , M.S. and Ph.D. degrees from Nanjing University of Aeronautics and Astronautics, Nanjing, in 1990, 1995 and 1997, respectively, all in mechanical engineering. From December 1997 to December 1999, he was a Postdoctoral Fellow with Zhejiang University, Hangzhou, China, where he became an Associate Professor in July 1999. Since December 1999, he has been with the Robotics Institute, Shanghai Jiao Tong University, Shanghai, China, where he became a Professor and a Tenure Professor in December 2005 and January 2016, respectively. His research interests include robotics, force control, exoskeleton robot, molecular motor, artificial limb, robotic assembly, reconfigurable assembly system, and augmented reality. Dr. Yin is a fellow of the International Academy of Production Engineering (CIRP).
Simultaneous Localization and Mapping for Mobile Robots: Introduction and Methods investigates the complexities of the theory of probabilistic localization and mapping of mobile robots as well as providing the most current and concrete developments. This reference source aims to be useful for practitioners, graduate and postgraduate students, and active researchers alike.
The content of this book includes a variety of nondestructive testing (NDT) methods, with many introductions to testing and application cases. The book proposes new ultrasonic testing technology for complex workpieces. It is hard for traditional NDT technology to realize the automatic detection of complex curved components, especially the automatic high-precision nondestructive detection of curved-surface components with variable curvature, variable thickness and complex contour. Therefore, the robotic NDT technique as a combination of manipulator technique and NDT technique can further improve the efficiency and accuracy of NDT. Robotic NDT Technique combines the physical principle of nondestructive testing with the flexible motion control of spatial attitude of articulated manipulator. With NDT as the constraint, it controls the motion attitude and azimuth angle of a transmitting and receiving transducer. Thus traditional NDT technique has developed from plane to curved surface, from 2D to many dimensions and from artificiality to intelligence, into a unique and systematic interdisciplinary robotic NDT technique.
Visual Perception and Control of Underwater Robots covers theories and applications from aquatic visual perception and underwater robotics. Within the framework of visual perception for underwater operations, image restoration, binocular measurement, and object detection are addressed. More specifically, the book includes adversarial critic learning for visual restoration, NSGA-II-based calibration for binocular measurement, prior knowledge refinement for object detection, analysis of temporal detection performance, as well as the effect of the aquatic data domain on object detection. With the aid of visual perception technologies, two up-to-date underwater robot systems are demonstrated. The first system focuses on underwater robotic operation for the task of object collection in the sea. The second is an untethered biomimetic robotic fish with a camera stabilizer, its control methods based on visual tracking. The authors provide a self-contained and comprehensive guide to understand underwater visual perception and control. Bridging the gap between theory and practice in underwater vision, the book features implementable algorithms, numerical examples, and tests, where codes are publicly available. Additionally, the mainstream technologies covered in the book include deep learning, adversarial learning, evolutionary computation, robust control, and underwater bionics. Researchers, senior undergraduate and graduate students, and engineers dealing with underwater visual perception and control will benefit from this work.
A leading artificial intelligence researcher lays out a new approach to AI that will enable us to coexist successfully with increasingly intelligent machines In the popular imagination, superhuman artificial intelligence is an approaching tidal wave that threatens not just jobs and human relationships, but civilization itself. Conflict between humans and machines is seen as inevitable and its outcome all too predictable. In this groundbreaking book, distinguished AI researcher Stuart Russell argues that this scenario can be avoided, but only if we rethink AI from the ground up. Russell begins by exploring the idea of intelligence in humans and in machines. He describes the near-term benefits we can expect, from intelligent personal assistants to vastly accelerated scientific research, and outlines the AI breakthroughs that still have to happen before we reach superhuman AI. He also spells out the ways humans are already finding to misuse AI, from lethal autonomous weapons to viral sabotage. If the predicted breakthroughs occur and superhuman AI emerges, we will have created entities far more powerful than ourselves. How can we ensure they never, ever, have power over us? Russell suggests that we can rebuild AI on a new foundation, according to which machines are designed to be inherently uncertain about the human preferences they are required to satisfy. Such machines would be humble, altruistic, and committed to pursue our objectives, not theirs. This new foundation would allow us to create machines that are provably deferential and provably beneficial.
Practical Field Robotics: A Systems Approach is an introductory book in the area of field robotics. It approaches the subject with a systems design methodology, showing the reader every important decision made in the process of planning, designing, making and testing a field robot. Key features: Takes a practical approach to field robotics, presenting the design and implementation of a robot from start to end Provides multiple robot examples including those used in in nuclear service, underground coal mining and mowing Bridges the gap between existing mathematically based texts and the real work that goes on in research labs all over the world Establishes a structured approach to thinking about hardware and software design Includes problems and is accompanied by a website providing supporting videos and additional problems
This book applies the concepts and methods of psychoanalysis to the study of artificial intelligence (AI) and human-AI interaction. It develops a new, more fruitful approach for applying psychoanalysis to AI and machine behavior. It appeals to a broad range of scholars: philosophers working on psychoanalysis, technology, AI ethics, and cognitive sciences, psychoanalysts, psychologists, and computer scientists. The book is divided into four parts. The first part (Chapter 1) analyzes the concept of "machine behavior." The second part (Chapter 2) develops a reinterpretation of some fundamental Freudian and Lacanian concepts through Bruno Latour's actor-network theory. The third part (Chapters 3 and 4) focuses on the nature and structure of the algorithmic unconscious. The author claims that the unconscious roots of AI lie in a form of projective identification, i.e., an emotional and imaginative exchange between humans and machines. In the fourth part of the book (Chapter 5), the author advances the thesis that neuropsychoanalysis and the affective neurosciences can provide a new paradigm for research on artificial general intelligence. The Algorithmic Unconscious explores a completely new approach to AI, which can also be defined as a form of "therapy." Analyzing the projective identification processes that take place in groups of professional programmers and designers, as well as the "hidden" features of AI (errors, noise information, biases, etc.), represents an important tool to enable a healthy and positive relationship between humans and AI. Psychoanalysis is used as a critical space for reflection, innovation, and progress.
Introduction to Quantum Natural Language Processing. Overview of Leadership and AI. The Age of Quantum Superiority. Challenges To Today's Leadership. AI-induced Strategic Implementation and Organizational Performance. |
![]() ![]() You may like...
Handbook of Research on Innovation…
Gonçalo Poeta Fernandes, António Silva Melo
Hardcover
R7,930
Discovery Miles 79 300
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,415
Discovery Miles 34 150
Robotics Software Design and Engineering
Alejandro Rafael Garcia Ramirez, Augusto Loureiro da Costa
Hardcover
R3,337
Discovery Miles 33 370
Sensory Systems for Robotic Applications
Ravinder Dahiya, Oliver Ozioko, …
Hardcover
Soft Robotics in Rehabilitation
Amir Jafari, Nafiseh Ebrahimi
Paperback
R3,125
Discovery Miles 31 250
Handbook of Robotic and Image-Guided…
Mohammad Hossein Abedin Nasab
Hardcover
Mem-elements for Neuromorphic Circuits…
Christos Volos, Viet-Thanh Pham
Paperback
R3,838
Discovery Miles 38 380
|