![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > Robotics
This volume gathers the proceedings of the Joint International Conference of the XIII International Conference on Mechanisms and Mechanical Transmissions (MTM) and the XXIV International Conference on Robotics (Robotics), held in Timisoara, Romania. It addresses the applications of mechanisms and transmissions in several modern technical fields such as mechatronics, biomechanics, machines, micromachines, robotics and apparatus. In doing so, it combines theoretical findings and experimental testing. The book presents peer-reviewed papers written by researchers specialized in mechanism analysis and synthesis, dynamics of mechanisms and machines, mechanical transmissions, biomechanics, precision mechanics, mechatronics, micromechanisms and microactuators, computational and experimental methods, CAD in mechanism and machine design, mechanical design of robot architecture, parallel robots, mobile robots, micro and nano robots, sensors and actuators in robotics, intelligent control systems, biomedical engineering, teleoperation, haptics, and virtual reality.
Knowledge and Technology Integration in Production and Services presents novel application scenarios for balanced distributed and integrated systems based on knowledge and up-to-date technology and provides a great opportunity for discussion of concepts, models, methodologies, technological developments, case studies, new research ideas, and other results among specialists. It comprises the proceedings of the Fifth International Conference on Information Technology for BALANCED AUTOMATION SYSTEMS in Manufacturing and Services (BASYS'02), which was sponsored by the International Federation for Information Processing (IFIP) and held in September 2002 in Cancun, Mexico.
This book presents social welfare functions as a unified multidisciplinary framework for various resource allocation problems. By measuring the impact of local decisions on broader society, social welfare functions enable "socialized" decisions and thereby produce an emergent property that "global" balance and welfare emerge from "local" welfare-maximizing behaviors. Social welfare functions are originally used in economics to quantify income welfare, jointly considering average and inequality to arrive at better measures of welfare than average alone. Wishing the readers to find opportunities for their problems of interest, this book introduces research results of social welfare functions applied in five different engineering applications, defining welfare metrics pertaining to the characteristics of the application. The "energy welfare" in wireless sensor network measures richness of distributed sensors in energy. The "preparedness welfare" in emergency medical services quantifies the preparedness level of an entire service area by aggregating preparedness levels of individual zones. The "preference welfare" in intelligent shared environments represents the opinions of real people for groups. The "resource welfare" in multi-robot task allocation quantifies the efficiency of utilizing distributed resources across robots. The "utility welfare" in complex cyber-physical systems quantifies the impact of local resource sharing decisions on the broader task communities.
Fundamental Design and Automation Technologies in Offshore Robotics introduces technological design, modelling, stability analysis, control synthesis, filtering problem and real time operation of robotics vehicles in offshore environments. The book gives numerical and simulation results in each chapter to reflect the engineering practice yet demonstrate the focus of the developed analysis and synthesis approaches. The book is ideal to be used as a reference book for senior and graduate students. It is written in a way that the presentation is simple, clear, and easy to read and understand which would be appreciated by graduate students. Researchers working on marine vehicles and robotics would be able to find reference material on related topics from the book. The book could be of a significant interest to the researchers within offshore and deep see society, including both academic and industrial parts.
This book constitutes the proceedings of the third international conference AsiaHaptics 2018, held in Songdo, Korea. It presents the state-of-the-art of the diverse haptics (touch)-related research, including perception and illusion, development of haptics devices, and applications to a wide variety of fields such as education, medicine, telecommunication, navigation and entertainment. This book is a valuable resource not only for active haptics researchers, but also for general readers wishing to understand the status quo in this interdisciplinary area of science and technology.
This book describes active illumination techniques in computer vision. We can classify computer vision techniques into two classes: passive and active techniques. Passive techniques observe the scene statically and analyse it as is. Active techniques give the scene some actions and try to facilitate the analysis. In particular, active illumination techniques project specific light, for which the characteristics are known beforehand, to a target scene to enable stable and accurate analysis of the scene. Traditional passive techniques have a fundamental limitation. The external world surrounding us is three-dimensional; the image projected on a retina or an imaging device is two-dimensional. That is, reduction of one dimension has occurred. Active illumination techniques compensate for the dimensional reduction by actively controlling the illumination. The demand for reliable vision sensors is rapidly increasing in many application areas, such as robotics and medical image analysis. This book explains this new endeavour to explore the augmentation of reduced dimensions in computer vision. This book consists of three parts: basic concepts, techniques, and applications. The first part explains the basic concepts for understanding active illumination techniques. In particular, the basic concepts of optics are explained so that researchers and engineers outside the field can understand the later chapters. The second part explains currently available active illumination techniques, covering many techniques developed by the authors. The final part shows how such active illumination techniques can be applied to various domains, describing the issue to be overcome by active illumination techniques and the advantages of using these techniques. This book is primarily aimed at 4th year undergraduate and 1st year graduate students, and will also help engineers from fields beyond computer vision to use active illumination techniques. Additionally, the book is suitable as course material for technical seminars.
This book is a compilation of advanced research and applications on robotic item picking and warehouse automation for e-commerce applications. The works in this book are based on results that came out of the Amazon Robotics Challenge from 2015-2017, which focused on fully automated item picking in a warehouse setting, a topic that has been assumed too complicated to solve or has been reduced to a more tractable form of bin picking or single-item table top picking. The book's contributions reveal some of the top solutions presented from the 50 participant teams. Each solution works to address the time-constraint, accuracy, complexity, and other difficulties that come with warehouse item picking. The book covers topics such as grasping and gripper design, vision and other forms of sensing, actuation and robot design, motion planning, optimization, machine learning and artificial intelligence, software engineering, and system integration, among others. Through this book, the authors describe how robot systems are built from the ground up to do a specific task, in this case, item picking in a warehouse setting. The compiled works come from the best robotics research institutions and companies globally.
This book highlights recent research on interval methods for solving nonlinear constraint satisfaction, optimization and similar problems. Further, it presents a comprehensive survey of applications in various branches of robotics, artificial intelligence systems, economics, control theory, dynamical systems theory, and others. Three appendices, on the notation, representation of numbers used as intervals' endpoints, and sample implementations of the interval data type in several programming languages, round out the coverage.
This book gathers papers from the 23rd International Forum on Advanced Microsystems for Automotive Applications (AMAA 2020) held online from Berlin, Germany, on May 26-27, 2020. Focusing on intelligent system solutions for auto mobility and beyond, it discusses in detail innovations and technologies enabling electrification, automation and diversification, as well as strategies for a better integration of vehicles into the networks of traffic, data and power. Further, the book addresses other relevant topics, including the role of human factors and safety issues in automated driving, solutions for shared mobility, as well as automated bus transport in rural areas. Implications of current circumstances, such as those generated by climate change, on the future development of auto mobility, are also analysed, providing researchers, practitioners and policy makers with an authoritative snapshot of the state-of-the-art, and a source of inspiration for future developments and collaborations.
This book is a compilation of selected papers from the 12th International Workshop of Advanced Manufacturing and Automation (IWAMA 2022), held in Jimei University, Xiamen, China on 01 - 02 November, 2022. Topics focusing on novel techniques for manufacturing and automation in Industry 4.0 are now vital factors for the maintenance and improvement of the economy of a nation and the quality of life. It will help academic researchers and engineering to implement the concept, theory and methods in Industry 4.0 which has been a hot topic. These proceedings will make valuable contributions to academic researchers, engineers in the industry for the challenges in the 4th industry revolution and smart factories.
This book focuses on the fundamentals of deep learning along with reporting on the current state-of-art research on deep learning. In addition, it provides an insight of deep neural networks in action with illustrative coding examples. Deep learning is a new area of machine learning research which has been introduced with the objective of moving ML closer to one of its original goals, i.e. artificial intelligence. Deep learning was developed as an ML approach to deal with complex input-output mappings. While traditional methods successfully solve problems where final value is a simple function of input data, deep learning techniques are able to capture composite relations between non-immediately related fields, for example between air pressure recordings and English words, millions of pixels and textual description, brand-related news and future stock prices and almost all real world problems. Deep learning is a class of nature inspired machine learning algorithms that uses a cascade of multiple layers of nonlinear processing units for feature extraction and transformation. Each successive layer uses the output from the previous layer as input. The learning may be supervised (e.g. classification) and/or unsupervised (e.g. pattern analysis) manners. These algorithms learn multiple levels of representations that correspond to different levels of abstraction by resorting to some form of gradient descent for training via backpropagation. Layers that have been used in deep learning include hidden layers of an artificial neural network and sets of propositional formulas. They may also include latent variables organized layer-wise in deep generative models such as the nodes in deep belief networks and deep boltzmann machines. Deep learning is part of state-of-the-art systems in various disciplines, particularly computer vision, automatic speech recognition (ASR) and human action recognition.
Multimodal Perception and Secure State Estimation for Robotic Mobility Platforms Enables readers to understand important new trends in multimodal perception for mobile robotics This book provides a novel perspective on secure state estimation and multimodal perception for robotic mobility platforms such as autonomous vehicles. It thoroughly evaluates filter-based secure dynamic pose estimation approaches for autonomous vehicles over multiple attack signals and shows that they outperform conventional Kalman filtered results. As a modern learning resource, it contains extensive simulative and experimental results that have been successfully implemented on various models and real platforms. To aid in reader comprehension, detailed and illustrative examples on algorithm implementation and performance evaluation are also presented. Written by four qualified authors in the field, sample topics covered in the book include: Secure state estimation that focuses on system robustness under cyber-attacks Multi-sensor fusion that helps improve system performance based on the complementary characteristics of different sensors A geometric pose estimation framework to incorporate measurements and constraints into a unified fusion scheme, which has been validated using public and self-collected data How to achieve real-time road-constrained and heading-assisted pose estimation This book will appeal to graduate-level students and professionals in the fields of ground vehicle pose estimation and perception who are looking for modern and updated insight into key concepts related to the field of robotic mobility platforms.
This book focuses on gyro-free inertial navigation technology, which is used to measure not only linear motion parameters but also angular rates. Since no gyroscopes are used, the key technologies, such as initial alignment, attitude resolution, and error calibration, are very different than those used in traditional methods. Discussing each key technology in gyro-free inertial navigation system (GFINS) manufacture in a separate chapter, the book features easy-to-understand, detailed illustrations, to allow all those involved in inertial navigation to gain a better grasp of GFINS manufacture, including accelerometer setting principles; initial alignment; quaternion-based, attitude resolution algorithms; and accelerometer de-noise methods.
Human-Robot Interaction: Safety, Standardization, and Benchmarking provides a comprehensive introduction to the new scenarios emerging where humans and robots interact in various environments and applications on a daily basis. The focus is on the current status and foreseeable implications of robot safety, approaching these issues from the standardization and benchmarking perspectives. Featuring contributions from leading experts, the book presents state-of-the-art research, and includes real-world applications and use cases. It explores the key leading sectors-robotics, service robotics, and medical robotics-and elaborates on the safety approaches that are being developed for effective human-robot interaction, including physical robot-human contacts, collaboration in task execution, workspace sharing, human-aware motion planning, and exploring the landscape of relevant standards and guidelines. Features Presenting a comprehensive introduction to human-robot interaction in a number of domains, including industrial robotics, medical robotics, and service robotics Focusing on robot safety standards and benchmarking Providing insight into current developments in international standards Featuring contributions from leading experts, actively pursuing new robot development
This book is of interest to researchers wanting to know more about the latest topics and methods in the fields of the kinematics, control and design of robotic systems. The papers cover the full range of robotic systems, including serial, parallel and cable-driven manipulators. The systems range from being less than fully mobile, to kinematically redundant, to over-constrained. The book brings together 43 peer-reviewed papers. They report on the latest scientific and applied achievements. The main theme that connects them is the movement of robots in the most diverse areas of application.
This book offers a timely and comprehensive snapshot of research and developments in the fields of dynamic systems and control engineering. Covering a wide range of theoretical and practical issues, the contributions describes a number of different control approaches, such as PID control, adaptive control, nonlinear systems and control, intelligent monitoring and control based on fuzzy and neural systems, robust control systems, and real time control, among others. Sensors and actuators, measurement systems, renewable energy systems, aeronautic and aerospace systems as well as industrial control and automation, are also comprehensively covered. Based on the proceedings of the 15th APCA International Conference on Automatic Control and Soft Computing, held on July 6-8, 2022, in Caparica, Portugal, the book offers a timely and thoroughly survey of the latest research in the fields of dynamic systems and automatic control engineering, and a source of inspiration for researchers and professionals worldwide.
This book presents a unified mathematical treatment of diverse problems in the general domain of robotics and associated fields using Clifford or geometric alge- bra. By addressing a wide spectrum of problems in a common language, it offers both fresh insights and new solutions that are useful to scientists and engineers working in areas related with robotics. It introduces non-specialists to Clifford and geometric algebra, and provides ex- amples to help readers learn how to compute using geometric entities and geomet- ric formulations. It also includes an in-depth study of applications of Lie group theory, Lie algebra, spinors and versors and the algebra of incidence using the universal geometric algebra generated by reciprocal null cones. Featuring a detailed study of kinematics, differential kinematics and dynamics using geometric algebra, the book also develops Euler Lagrange and Hamiltoni- ans equations for dynamics using conformal geometric algebra, and the recursive Newton-Euler using screw theory in the motor algebra framework. Further, it comprehensively explores robot modeling and nonlinear controllers, and discusses several applications in computer vision, graphics, neurocomputing, quantum com- puting, robotics and control engineering using the geometric algebra framework. The book also includes over 200 exercises and tips for the development of future computer software packages for extensive calculations in geometric algebra, and a entire section focusing on how to write the subroutines in C++, Matlab and Maple to carry out efficient geometric computations in the geometric algebra framework. Lastly, it shows how program code can be optimized for real-time computations. An essential resource for applied physicists, computer scientists, AI researchers, roboticists and mechanical and electrical engineers, the book clarifies and demon- strates the importance of geometric computing for building autonomous systems to advance cognitive systems research.
This volume of the series ARENA2036 compiles the outcomes of the first Stuttgart Conference on Automotive Production (SCAP2020). It contains peer-reviewed contributions from a theoretical as well as practical vantage point and is topically structured according to the following four sections: It discusses (I) Novel Approaches for Efficient Production and Assembly Planning, (II) Smart Production Systems and Data Services, (III) Advances in Manufacturing Processes and Materials, and (IV) New Concepts for Autonomous, Collaborative Intralogistics. Given the restrictive circumstances of 2020, the conference was held as a fully digital event divided into two parts. It opened with a pre-week, allowing everyone to peruse the scientific contributions at their own pace, followed by a two-day live event that enabled experts from the sciences and the industry to engage in various discussions. The conference has proven itself as an insightful forum that allowed for an expertly exchange regarding the pivotal Advances in Automotive Production and Technology.
How will artificial intelligence change our world within twenty years?
As robots are becoming more and more sophisticated the interest in
robot dynamics is increasing. Within this field, contact problems
are among the most interesting, since contacts are present in
almost any robot task and introduce serious complexity to system
dynamics, strongly influencing robot behavior. The book formulates
dynamic models of robot interaction with different kinds of
environment, from pure geometrical constraints to complex dynamic
environments. It provides a number of examples. Dynamic modeling is
the primary interest of the book but control issues are treated as
well. Because dynamics and contact control tasks are strongly
related the authors also provide a brief description of relevant
control issues.
This monograph introduces a unifying framework for mapping, planning and exploration with mobile robots considering uncertainty, linking such problems with a common SLAM approach, adopting Pose SLAM as the basic state estimation machinery. Pose SLAM is the variant of SLAM where only the robot trajectory is estimated and where landmarks are used to produce relative motion measurements between robot poses. With regards to extending the original Pose SLAM formulation, this monograph covers the study of such measurements when they are obtained with stereo cameras, develops the appropriate noise propagation models for such case, extends the Pose SLAM formulation to SE(3), introduces information-theoretic loop closure tests, and presents a technique to compute traversability maps from the 3D volumetric maps obtained with Pose SLAM. A relevant topic covered in this monograph is the introduction of a novel path planning approach that exploits the modeled uncertainties in Pose SLAM to search for the path in the pose graph that allows the robot to navigate to a given goal with the least probability of becoming lost. Another relevant topic is the introduction of an autonomous exploration method that selects the appropriate actions to drive the robot so as to maximize coverage, while minimizing localization and map uncertainties. This monograph is appropriate for readers interested in an information-theoretic unified perspective to the SLAM, path planning and exploration problems, and is a reference book for people who work in mobile robotics research in general.
This book addresses dynamic modelling methodology and analyses of tree-type robotic systems. Such analyses are required to visualize the motion of a system without really building it. The book contains novel treatment of the tree-type systems using concept of kinematic modules and the corresponding Decoupled Natural Orthogonal Complements (DeNOC), unified representation of the multiple-degrees-of freedom-joints, efficient recursive dynamics algorithms, and detailed dynamic analyses of several legged robots. The book will help graduate students, researchers and practicing engineers in applying their knowledge of dynamics for analysis of complex robotic systems. The knowledge contained in the book will help one in virtual testing of robot operation, trajectory planning and control.
This book offers a comprehensive reference guide for modeling humanoid robots using intelligent and fuzzy systems. It provides readers with the necessary intelligent and fuzzy tools for controlling humanoid robots by incomplete, vague, and imprecise information or insufficient data, where classical modeling approaches cannot be applied. The respective chapters, written by prominent researchers, explain a wealth of both basic and advanced concepts including fuzzy control, metaheuristic-based control, neutrosophic control, etc. To foster reader comprehension, all chapters include relevant numerical examples or case studies. Taken together, they form an excellent reference guide for researchers, lecturers, and postgraduate students pursuing research on humanoid robots. Moreover, by extending all the main aspects of humanoid robots to its intelligent and fuzzy counterparts, the book presents a dynamic snapshot of the field that is expected to stimulate new directions, ideas, and developments.
This book provides exclusive insight into the development of a new generation of robotic underwater technologies. Deploying and using even the most simple and robust mechanical tools is presenting a challenge, and is often associated with an enormous amount of preparation, continuous monitoring, and maintenance. Therefore, all disciplinary aspects (e.g. system design, communication, machine learning, mapping and coordination, adaptive mission planning) are examined in detail and together this gives an extensive overview on research areas influencing next generation underwater robots. These robotic underwater systems will operate autonomously with the help of the most modern artificial intelligence procedures and perform environmental monitoring as well as inspection and maintenance of underwater structures. The systems are designed as modular and reconfigurable systems for long term autonomy to remain at the site for longer periods of time. New communication methods using AI enable missions of hybrid teams of humans and heterogeneous robots. Thus this volume will be an important reference for scientists on every qualification level in the field of underwater technologies, industrial maritime applications, and maritime science.
This book shows how a conventional multi-layered approach can be used to control a snake robot on a desired path while moving on a flat surface. To achieve robustness to unknown variations in surface conditions, it explores various adaptive robust control methods. The authors propose a sliding-mode control approach designed to achieve robust maneuvering for bounded uncertainty with a known upper bound. The control is modified by addition of an adaptation law to alleviate the overestimation problem of the switching gain as well as to circumvent the requirement for knowledge regarding the bounds of uncertainty. The book works toward non-conservativeness, achieving efficient tracking in the presence of slowly varying uncertainties with a specially designed framework for time-delayed control. It shows readers how to extract superior performance from their snake robots with an approach that allows robustness toward bounded time-delayed estimation errors. The book also demonstrates how the multi-layered control framework can be simplified by employing differential flatness for such a system. Finally, the mathematical model of a snake robot moving inside a uniform channel using only side-wall contact is discussed. The model has further been employed to demonstrate adaptive robust control design for such a motion. Using numerous illustrations and tables, Adaptive Robust Control for Planar Snake Robots will interest researchers, practicing engineers and postgraduate students working in the field of robotics and control systems. |
You may like...
Artificial Intelligence and Data Science…
Mohsen Asadnia, Amir Razmjou, …
Paperback
R2,578
Discovery Miles 25 780
Advanced Methods and Deep Learning in…
E.R. Davies, Matthew Turk
Paperback
R2,578
Discovery Miles 25 780
Robotics for Cell Manipulation and…
Changsheng Dai, Guanqiao Shan, …
Paperback
R2,951
Discovery Miles 29 510
5G IoT and Edge Computing for Smart…
Akash Kumar Bhoi, Victor Hugo Costa de Albuquerque, …
Paperback
R2,588
Discovery Miles 25 880
Design and Control Advances in Robotics
Mohamed Arezk Mellal
Hardcover
R7,594
Discovery Miles 75 940
|