Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > Robotics
It explore issues of diversity and inclusion in relation to artificial intelligence (AI). The author leads a research group on Digitalization and Robotization of Society at NTNU Norwegian University of Science and Technology.
This open access book assesses the potential of data-driven methods in industrial process monitoring engineering. The process modeling, fault detection, classification, isolation, and reasoning are studied in detail. These methods can be used to improve the safety and reliability of industrial processes. Fault diagnosis, including fault detection and reasoning, has attracted engineers and scientists from various fields such as control, machinery, mathematics, and automation engineering. Combining the diagnosis algorithms and application cases, this book establishes a basic framework for this topic and implements various statistical analysis methods for process monitoring. This book is intended for senior undergraduate and graduate students who are interested in fault diagnosis technology, researchers investigating automation and industrial security, professional practitioners and engineers working on engineering modeling and data processing applications. This is an open access book.
This book addresses dynamic modelling methodology and analyses of tree-type robotic systems. Such analyses are required to visualize the motion of a system without really building it. The book contains novel treatment of the tree-type systems using concept of kinematic modules and the corresponding Decoupled Natural Orthogonal Complements (DeNOC), unified representation of the multiple-degrees-of freedom-joints, efficient recursive dynamics algorithms, and detailed dynamic analyses of several legged robots. The book will help graduate students, researchers and practicing engineers in applying their knowledge of dynamics for analysis of complex robotic systems. The knowledge contained in the book will help one in virtual testing of robot operation, trajectory planning and control.
This monograph introduces a unifying framework for mapping, planning and exploration with mobile robots considering uncertainty, linking such problems with a common SLAM approach, adopting Pose SLAM as the basic state estimation machinery. Pose SLAM is the variant of SLAM where only the robot trajectory is estimated and where landmarks are used to produce relative motion measurements between robot poses. With regards to extending the original Pose SLAM formulation, this monograph covers the study of such measurements when they are obtained with stereo cameras, develops the appropriate noise propagation models for such case, extends the Pose SLAM formulation to SE(3), introduces information-theoretic loop closure tests, and presents a technique to compute traversability maps from the 3D volumetric maps obtained with Pose SLAM. A relevant topic covered in this monograph is the introduction of a novel path planning approach that exploits the modeled uncertainties in Pose SLAM to search for the path in the pose graph that allows the robot to navigate to a given goal with the least probability of becoming lost. Another relevant topic is the introduction of an autonomous exploration method that selects the appropriate actions to drive the robot so as to maximize coverage, while minimizing localization and map uncertainties. This monograph is appropriate for readers interested in an information-theoretic unified perspective to the SLAM, path planning and exploration problems, and is a reference book for people who work in mobile robotics research in general.
This open access book focuses on robot introspection, which has a direct impact on physical human-robot interaction and long-term autonomy, and which can benefit from autonomous anomaly monitoring and diagnosis, as well as anomaly recovery strategies. In robotics, the ability to reason, solve their own anomalies and proactively enrich owned knowledge is a direct way to improve autonomous behaviors. To this end, the authors start by considering the underlying pattern of multimodal observation during robot manipulation, which can effectively be modeled as a parametric hidden Markov model (HMM). They then adopt a nonparametric Bayesian approach in defining a prior using the hierarchical Dirichlet process (HDP) on the standard HMM parameters, known as the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). The HDP-HMM can examine an HMM with an unbounded number of possible states and allows flexibility in the complexity of the learned model and the development of reliable and scalable variational inference methods. This book is a valuable reference resource for researchers and designers in the field of robot learning and multimodal perception, as well as for senior undergraduate and graduate university students.
For senior-yearundergraduate and first-year graduate courses in robotics. An intuitiveintroduction to robotic theory and application Since its originalpublication in 1986, Craig's Introduction to Robotics: Mechanics andControl has been the leading textbook for teaching robotics at theuniversity level. Blending traditional mechanical engineering material withcomputer science and control theoretical concepts, the text covers a range oftopics, including rigid-body transformations, forward and inverse positionalkinematics, velocities and Jacobians of linkages, dynamics, linear andnon-linear control, force control methodologies, mechanical design aspects, androbotic programming. The 4th Edition featuresa balance of application and theory, introducing the science and engineering ofmechanical manipulation-establishing and building on foundational understandingof mechanics, control theory, and computer science. With an emphasis on the computationalaspects of problems, the text aims to present material in a simple, intuitive manner.
The book reports on advanced topics in the areas of wearable robotics research and practice. It focuses on new technologies, including neural interfaces, soft wearable robots, sensors and actuators technologies, and discusses important regulatory challenges, as well as clinical and ethical issues. Based on the 4th International Symposium on Wearable Robotics, WeRob2018, held October 16-20, 2018, in Pisa, Italy, the book addresses a large audience of academics and professionals working in government, industry, and medical centers, and end-users alike. It provides them with specialized information and with a source of inspiration for new ideas and collaborations. It discusses exemplary case studies highlighting practical challenges related to the implementation of wearable robots in a number of fields. One of the focus is on clinical applications, which was encouraged by the colocation of WeRob2018 with the International Conference on Neurorehabilitation, INCR2018. Additional topics include space applications and assistive technologies in the industry. The book merges together the engineering, medical, ethical and political perspectives, thus offering a multidisciplinary, timely snapshot of the field of wearable technologies.
This reference text provides the theoretical foundations, the emergence, and the application areas of Blockchain in an easy-to-understand manner that would be highly helpful for the researchers, academicians, and industry professionals to understand the disruptive potentials of Blockchain. It explains Blockchain concepts related to Industry 4.0, Smart Healthcare, and the Internet of Things (IoT) and explores Smart Contracts and Consensus algorithms. This book will serve as an ideal reference text for graduate students and academic researchers in electrical engineering, electronics and communication engineering, computer engineering, and information technology. This book * Discusses applications of blockchain technology in diverse sectors such as industry 4.0, education, finance, and supply chain. * Provides theoretical concepts, applications, and research advancements in the field of blockchain. * Covers industry 4.0 digitization platform and blockchain for data management in industry 4.0 in a comprehensive manner. * Emphasizes analysis and design of consensus algorithms, fault tolerance, and strategy to choose the correct consensus algorithm. * Introduces security issues in the industrial internet of things, internet of things, blockchain integration, and blockchain-based applications. The text presents in-depth coverage of theoretical concepts, applications and advances in the field of blockchain technology. This book will be an ideal reference for graduate students and academic researchers in diverse engineering fields such as electrical, electronics and communication, computer, and information technology.
This book investigates Unmanned Aircraft Systems (UAS) with a payload capacity of one metric ton for transportation. The authors provide a large variety of perspectives-from economics to technical realization. With the focus on such heavy-lift cargo UAS, the authors consider recently established methods for approval and certification, which they expect to be disruptive for unmanned aviation. In particular, the Specific Operations Risk Assessment (SORA) and its impact on the presented technological solutions and operational concepts are studied. Starting with the assumption of an operation over sparsely populated areas and below common air traffic, diverse measures to further reduce operational risks are proposed. Operational concepts derived from logistics use-cases set the context for an in-depth analysis including aircraft and system design, safe autonomy as well as airspace integration and datalinks. Results from simulations and technology demonstrations are presented as a proof of concept for solutions proposed in this book.
This book gathers the proceedings of the ISRM 2017, the fifth IFToMM International Symposium on Robotics and Mechatronics, which was jointly organised by the School of Computing, Engineering and Mathematics at Western Sydney University, Australia and by the IFToMM Technical Committee on Robotics and Mechatronics. The respective contributions showcase the latest advances, trends and future challenges in Computer Modelling and Simulation, Kinematics and Dynamics of Multi-Body Systems, Advanced Dynamics and Control Methods, Linkages and Mechanical Controls, Parallel Manipulators, Mechanism Design, Sensors and Actuators, Mobile Robotics: Navigation and Motion Planning, Bio-inspired Robotics, Micro/Nano-Robotics and Complex Robotic Systems.
These proceedings present the latest information on regulations and standards for medical and non-medical devices, including wearable robots for gait training and support, design of exoskeletons for the elderly, innovations in assistive robotics, and analysis of human-machine interactions taking into account ergonomic considerations. The rapid development of key mechatronics technologies in recent years has shown that human living standards have significantly improved, and the International Conference on Wearable Sensor and Robot was held in Hangzhou, China from October 16 to 18, 2015, to present research mainly focused on personal-care robots and medical devices. The aim of the conference was to bring together academics, researchers, engineers and students from across the world to discuss state-of-the-art technologies related to various aspects of wearable sensors and robots.
This book is a collection of papers presented at XIV International Scientific Conference "INTERAGROMASH 2021", held at Don State Technical University, Rostov-on-Don, Russia, during 24-26 February 2021. The research results presented in this book cover applications of unmanned aerial systems, satellite-based applications for precision agriculture, proximal and remote sensing of soil and crop, spatial analysis, variable-rate technology, embedded sensing systems, drainage optimization and variable rate irrigation, wireless sensor networks, Internet of things, robotics, guidance and automation, software and mobile apps for precision agriculture, decision support for precision agriculture and data mining for precision agriculture.
As robots are becoming more and more sophisticated the interest in
robot dynamics is increasing. Within this field, contact problems
are among the most interesting, since contacts are present in
almost any robot task and introduce serious complexity to system
dynamics, strongly influencing robot behavior. The book formulates
dynamic models of robot interaction with different kinds of
environment, from pure geometrical constraints to complex dynamic
environments. It provides a number of examples. Dynamic modeling is
the primary interest of the book but control issues are treated as
well. Because dynamics and contact control tasks are strongly
related the authors also provide a brief description of relevant
control issues.
This volume comprises the latest developments in both fundamental science and patient-specific applications, discussing topics such as: cellular mechanics, injury biomechanics, biomechanics of the heart and vascular system, algorithms of computational biomechanics for medical image analysis, and both patient-specific fluid dynamics and solid mechanics simulations. With contributions from researchers world-wide, Computational Biomechanics for Medicine: Measurments, Models, and Predictions provides an opportunity for specialists in the field to present their latest methodologies and advancements.
Novel perspectives on machine behaviour as it relates to behavioural science. A framework of terminology to empower discussion of AI within behavioural science. A compelling definition of hypernudging developed from AI and behavioural science principles.
Underwater robots play a significant role in ocean exploration. This book provides full coverage of the theoretical and practical aspects of bionic gliding underwater robots, including system design, modeling control, and motion planning. To overcome the inherent shortcomings of traditional underwater robots that can simultaneously lack maneuverability and endurance, a new type of robot, the bionic gliding underwater robot, has attracted much attention from scientists and engineers. On the one hand, by imitating the appearance and swimming mechanisms of natural creatures, bionic gliding underwater robots achieve high maneuverability, swimming efficiency, and strong concealment. On the other hand, borrowing from the buoyancy adjustment systems of underwater gliders, bionic gliding underwater robots can obtain strong endurance, which is significant in practical applications. Taking gliding robotic dolphin and fish as examples, the designed prototypes and proposed methods are discussed, offering valuable insights into the development of next-generation underwater robots that are well suited for various oceanic applications. This book will be of great interest to students and professionals alike in the field of robotics or intelligent control. It will also be a great reference for engineers or technicians who deal with the development of underwater robots.
This book reports on advanced topics in the areas of wearable robotics research and practice. It focuses on new technologies, including neural interfaces, soft wearable robots, sensors and actuators technologies, discussing industrially and medically-relevant issues, as well as legal and ethical aspects. It covers exemplary case studies highlighting challenges related to the implementation of wearable robots for different purposes, and describing advanced solutions. Based on the 5th International Symposium on Wearable Robotics, WeRob2020, and on WearRacon Europe 2020, which were both held online on October 13-16, 2020, the book addresses a large audience of academics and professionals working in for the government, in the industry, and in medical centers, as well as end-users alike. By merging together engineering, medical, ethical and industrial perspectives, it offers a multidisciplinary, timely snapshot of the field of wearable technologies.
This book covers a variety of problems, and offers solutions to some, in: Statistical state and parameter estimation in nonlinear stochastic dynamical system in both the classical and quantum scenarios Propagation of electromagnetic waves in a plasma as described by the Boltzmann Kinetic Transport Equation Classical and Quantum General Relativity It will be of use to Engineering undergraduate students interested in analysing the motion of robots subject to random perturbation, and also to research scientists working in Quantum Filtering.
These proceedings showcase the best papers selected from more than 500 submissions, and introduce readers to the hottest research topics and the latest developmental trends in the theory and application of MMESE. The integrated and advanced science research topic Man-Machine-Environment System Engineering (MMESE) was first established in China by Professor Shengzhao Long in 1981, with direct support from one of the greatest modern Chinese scientists, Xuesen Qian. In a letter to Long from October 22nd, 1993, Qian wrote: "You have created a very important modern science and technology in China!" MMESE primarily focuses on the relationship between Man, Machine and Environment, studying the optimum combination of man-machine-environment systems. In this system, "Man" refers to working people as the subject in the workplace (e.g. operators, decision-makers); "Machine" is the general name for any object controlled by Man (including tools, machinery, computers, systems and technologies), and "Environment" describes the specific working conditions under which Man and Machine interact (e.g. temperature, noise, vibration, hazardous gases etc.). The three main goals of optimizing man-machine-environment systems are to ensure safety, efficiency and economy. These proceedings present interdisciplinary studies on essential concepts and methods from physiology, psychology, system engineering, computer science, environmental science, management, education, and other related disciplines. As such, they offer a valuable resource for all researchers and professionals whose work involves interdisciplinary areas touching on MMESE subjects.
This book introduces novel thinking and techniques to the control of robotic manipulation. In particular, the concept of teleimpedance control as an alternative method to bilateral force-reflecting teleoperation control for robotic manipulation is introduced. In teleimpedance control, a compound reference command is sent to the slave robot including both the desired motion trajectory and impedance profile, which are then realized by the remote controller. This concept forms a basis for the development of the controllers for a robotic arm, a dual-arm setup, a synergy-driven robotic hand, and a compliant exoskeleton for improved interaction performance.
In this book, Martijn Wisse and Richard Q. van der Linde provide a detailed description of their research on pneumatic biped robots at the Delft University of Technology, The Netherlands. The book covers the basic theory of passive dynamic walking and explains the implementation of pneumatic McKibben muscles in a series of successful prototypes.
In recent years, drones have been integrated with the Internet of Things to offer a variety of exciting new applications. Here is a detailed exploration of adapting and implementing Internet of Drones technologies in real-world applications, emphasizing solutions to architectural challenges and providing a clear overview of standardization and regulation, implementation plans, and privacy concerns. The book discusses the architectures and protocols for drone communications, implementing and deploying of 5G-drone setups, security issues, deep learning techniques applied on real-time footage, and more. It also explores some of the varied applications, such as for monitoring and analysis of troposphere pollutants, providing services and communications in smart cities (such as for weather forecasting, communications, transport, safety and protection), for disaster relief management, for agricultural crop monitoring, and more.
This monograph covers theoretical and practical aspects of the problem of autonomous guiding of unmanned aerial manipulators using visual information. For the estimation of the vehicle state (position, orientation, velocity, and acceleration), the authors propose a method that relies exclusively on the use of low-cost and highrate sensors together with low-complexity algorithms. This is particularly interesting for applications in which on board computation with low computation power is needed. Another relevant topic covered in this monograph is visual servoing. The authors present an uncalibrated visual servo scheme, capable of estimating at run time, the camera focal length from the observation of a tracked target. The monograph also covers several control techniques, which achieve a number of tasks, such as robot and arm positioning, improve stability and enhance robot arm motions. All methods discussed in this monograph are demonstrated in simulation and through real robot experimentation. The text is appropriate for readers interested in state estimation and control of aerial manipulators, and is a reference book for people who work in mobile robotics research in general.
This book offers an excellent complementary text for an advanced course on the modelling and dynamic analysis of multi-body mechanical systems, and provides readers an in-depth understanding of the modelling and control of robots. While the Lagrangian formulation is well suited to multi-body systems, its physical meaning becomes paradoxically complicated for single rigid bodies. Yet the most advanced numerical methods rely on the physics of these single rigid bodies, whose dynamic is then given among multiple formulations by the set of the Newton-Euler equations in any of their multiple expression forms. This book presents a range of simple tools to express in succinct form the dynamic equation for the motion of a single rigid body, either free motion (6-dimension), such as that of any free space navigation robot or constrained motion (less than 6-dimension), such as that of ground or surface vehicles. In the process, the book also explains the equivalences of (and differences between) the different formulations.
|
You may like...
AI 2041 - Ten Visions for Our Future
Kai-Fu Lee, Chen Qiufan
Paperback
Automation and Control - Theories and…
Elmer P. Dadios
Hardcover
Handbook of Research on Innovation…
Gonçalo Poeta Fernandes, António Silva Melo
Hardcover
R7,692
Discovery Miles 76 920
|