![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > Robotics
This volume describes new frontiers in medical and service robotics in the light of recent developments in technology to advance robot design and implementation. In particular, the work looks at advances in design, development and implementation of contemporary surgical, rehabilitation and biorobots. Surgical robots allow surgeons greater access to areas under operation using more precise and less invasive methods. Rehabilitation robots facilitate and support the lives of the infirm, elderly people, or those with dysfunction of body parts affecting movement. These robots are also used for rehabilitation and related procedures, such as training and therapy. Biorobots are designed to imitate the cognition of humans and animals. The need to substitute humans working on delicate, tiresome and monotonous tasks, or working with potentially health-damaging toxic materials, requires intelligent, high-performance service robots with the ability to cooperate, advanced communication and sophisticated perception and cognitive capabilities. Progress in this field is fast and results need to be disseminated to stimulate both practical applications and further research. Thus, these papers are a valuable addition to existing literature.
Verification presents the most time-consuming task in the
integrated circuit design process. The increasing similarity
between implementation verification and the ever-needed task of
providing vectors for manufacturing fault testing is tempting many
professionals to combine verification and testing efforts.
Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as hardware of Multi-Locomotion Robotic system. It is useful for students and researchers in the field of robotics in general, bio-inspired robots, multi-modal locomotion, legged walking, motion control, and humanoid robots. Furthermore, it is also of interest for lecturers and engineers in practice building systems cooperating with humans.
This book presents the latest scientific research related to the field of Robotics. It involves different topics such as biomedicine, energy efficiency and home automationand robotics. The book is written bytechnical experts and researchers from academia and industry working on robotics applications. The book could be used as supplementary material for courses related to Robotics and Domotics. "
In 1960, R. E. Kalman published his celebrated paper on recursive min imum variance estimation in dynamical systems [14]. This paper, which introduced an algorithm that has since been known as the discrete Kalman filter, produced a virtual revolution in the field of systems engineering. Today, Kalman filters are used in such diverse areas as navigation, guid ance, oil drilling, water and air quality, and geodetic surveys. In addition, Kalman's work led to a multitude of books and papers on minimum vari ance estimation in dynamical systems, including one by Kalman and Bucy on continuous time systems [15]. Most of this work was done outside of the mathematics and statistics communities and, in the spirit of true academic parochialism, was, with a few notable exceptions, ignored by them. This text is my effort toward closing that chasm. For mathematics students, the Kalman filtering theorem is a beautiful illustration of functional analysis in action; Hilbert spaces being used to solve an extremely important problem in applied mathematics. For statistics students, the Kalman filter is a vivid example of Bayesian statistics in action. The present text grew out of a series of graduate courses given by me in the past decade. Most of these courses were given at the University of Mas sachusetts at Amherst.
This book describes the design, mathematical modeling, control system development and experimental validation of a versatile mobile pipe inspection robot. It also discusses a versatile robotic system for pipeline inspection, together with an original, adaptable tracked mobile robot featuring a patented motion unit. Pipeline inspection is a common field of application for mobile robots because the monitoring of inaccessible, long and narrow pipelines is a very difficult task for humans. The main design objective is to minimize the number of robots needed to inspect different types of horizontal and vertical pipelines, with both smooth and rough surfaces. The book includes extensive information on the various design phases, mathematical modeling, simulations and control system development. In closing, the prototype construction process and testing procedures are presented and supplemented with laboratory and field experiments.
This book presents the most recent advances in the research and applications of reconfigurable mechanisms and robots. It collects 93 independently reviewed papers presented at the Third ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR 2015) held in Beijing, China, 20-22 July 2015. The conference papers are organized into seven parts to cover the reconfiguration theory, topology, kinematics and design of reconfigurable mechanisms including reconfigurable parallel mechanisms. The most recent results on reconfigurable robots are presented including their analysis, design, simulation and control. Bio-inspired mechanisms are also explored in the challenging fields of rehabilitation and minimally invasive surgery. This book further addresses deployable mechanisms and origami-inspired mechanisms and showcases a wide range of successful applications of reconfigurable mechanisms and robots. Advances in Reconfigurable Mechanisms and Robots II should be of interest for researchers, engineers and postgraduate students in mechanical engineering, electrical engineering, computer science and mathematics.
This volume surveys three decades of modern robot control theory and describes how the work of Suguru Arimoto shaped its development. Twelve survey articles written by experts associated with Suguru Arimoto at various stages in his career treat the subject comprehensively. This book provides an important reference for graduate students and researchers, as well as for mathematicians, engineers and scientists whose work involves robot control theory.
This book reviews the fundamentals of screw theory concerned with velocity analysis of rigid-bodies, confirmed with detailed and explicit proofs. The author additionally investigates acceleration, jerk, and hyper-jerk analyses of rigid-bodies following the trend of the velocity analysis. With the material provided in this book, readers can extend the theory of screws into the kinematics of optional order of rigid-bodies. Illustrative examples and exercises to reinforce learning are provided. Of particular note, the kinematics of emblematic parallel manipulators, such as the Delta robot as well as the original Gough and Stewart platforms are revisited applying, in addition to the theory of screws, new methods devoted to simplify the corresponding forward-displacement analysis, a challenging task for most parallel manipulators.
] Starting with the research of G. Bogelsack in the 1970s, the analysis of biological locomotion andmanipulation systemsandtheirtechnical realizationhas beenan- portant research eld within the Faculty of Mechanical Engineering at the Ilmenau University of Technology. In 1996, the German Research Foundation (DFG) funded the Innovation College "Motion Systems" at the University of Jena in a coope- tion with engineers at the Ilmenau University of Technology. Thus, research was able to be intensi ed and extended. Of course, the whole spectrum of biologically inspired systems is much too wide, so the analysis was still focused on locomotion and manipulation systems. At this stage J. Steigenberger from the Faculty of Mathematics and Natural S- ences at the Ilmenau University of Technology contributed important studies of worm-like locomotion systems with much dedication and technical competence. Moreover, he conceived and carried out a lecture series entitled "Mathematical Basics for Locomotion Systems," which was based on his evaluation of national and international research developments in this eld. I. Zeidis and K. Zimmermann contributed many publications on the mechanics of worm-like locomotion systems based on continuum and rigid-body models as well as asymptotic methods. Since 2004 the German Research Foundation has supported a series of projects led by K. Zimmermann dedicated to biologically inspired robotics. In addition to these activities, the Department of Technical Mechanics and the Department of Computer Application in Mechanical Engineering (M. Weiss) together with masters and doctoral students started the development of mobile robots for the RoboCup Small-Size League in 1998."
While sailing has a long tradition, both as a means of transportation and as a sport, robotic sailing is a fairly new area of research. One of its unique characteristics is the use of wind for propulsion. On the one hand, this allows for long range and long term autonomy. On the other hand, the dependency on changing winds presents a serious challenge for short and long term planning, collision avoidance, and boat control. Moreover, building a robust and seaworthy sailing robot is no simple task, leading to a truly interdisciplinary engineering problem. These proceedings summarize the state of the art as presented at the International Robotic Sailing Conference 2011. Following an overview of the history of autonomous sailing a number of recent boat designs is presented, ranging from small one-design boats to vessels built to cross the Atlantic Ocean. Subsequently, various aspects of system design and validation are discussed, further highlighting the interdisciplinary nature of the field. Finally, methods for collision avoidance, localization and route planning are covered.
This book focuses on two challenges posed in robot control by the increasing adoption of robots in the everyday human environment: uncertainty and networked communication. Part I of the book describes learning control to address environmental uncertainty. Part II discusses state estimation, active sensing, and complex scenario perception to tackle sensing uncertainty. Part III completes the book with control of networked robots and multi-robot teams. Each chapter features in-depth technical coverage and case studies highlighting the applicability of the techniques, with real robots or in simulation. Platforms include mobile ground, aerial, and underwater robots, as well as humanoid robots and robot arms. Source code and experimental data are available at http://extras.springer.com. The text gathers contributions from academic and industry experts, and offers a valuable resource for researchers or graduate students in robot control and perception. It also benefits researchers in related areas, such as computer vision, nonlinear and learning control, and multi-agent systems.
Surveillance systems have become increasingly popular. Full involvement of human operators has led to shortcomings, e.g. high labor cost, limited capability for multiple screens, inconsistency in long-duration, etc. Intelligent surveillance systems (ISSs) can supplement or even replace traditional ones. In ISSs, computer vision, pattern recognition, and artificial intelligence technologies are used to identify abnormal behaviours in videos. They present the development of real-time behaviour-based intelligent surveillance systems. The book focuses on the detection of individual abnormal behaviour based on learning and the analysis of dangerous crowd behaviour based on texture and optical flow. Practical systems include a real-time face classification and counting system, a surveillance robot system that utilizes video and audio information for intelligent interaction, and a robust person counting system for crowded environments.
Neural Networks in Robotics is the first book to present an integrated view of both the application of artificial neural networks to robot control and the neuromuscular models from which robots were created. The behavior of biological systems provides both the inspiration and the challenge for robotics. The goal is to build robots which can emulate the ability of living organisms to integrate perceptual inputs smoothly with motor responses, even in the presence of novel stimuli and changes in the environment. The ability of living systems to learn and to adapt provides the standard against which robotic systems are judged. In order to emulate these abilities, a number of investigators have attempted to create robot controllers which are modelled on known processes in the brain and musculo-skeletal system. Several of these models are described in this book. On the other hand, connectionist (artificial neural network) formulations are attractive for the computation of inverse kinematics and dynamics of robots, because they can be trained for this purpose without explicit programming. Some of the computational advantages and problems of this approach are also presented. For any serious student of robotics, Neural Networks in Robotics provides an indispensable reference to the work of major researchers in the field. Similarly, since robotics is an outstanding application area for artificial neural networks, Neural Networks in Robotics is equally important to workers in connectionism and to students for sensormonitor control in living systems.
Tele operation systems, in which robots are controlled remotely, are a potential solution to performing tasks in remote, small, and hazardous environments. However, there is a big disadvantage to these systems; as the direct connection between the human and the environment is lost and operators are deprived of their sense of touch. The recreation of touch feedback through haptic devices is a possible solution, however haptic devices are far from perfect and improving their design is usually a slow trial-and-error process. This book describes 7 scientific studies that try to break this slow loop by using a deductive approach. Through investigating fundamental properties of human haptic perception using psychophysical paradigms, general knowledge on haptic perception of force, position, movement and hardness was gained. The resulting information can be applied to many different haptic devices. Consequently haptic systems can be more easily designed in an intuitive, human-centered way.
In the last decade, we have seen an extraordinary progress in the the ory and applications of robot kinematics. This has been motivated espe cially by the development of complex parallel and humanoid robots. The present book reports the most recent research advances in the theory, design, control and application of robotic systems, which are intended for a variety of purposes such as manipulation, manufacturing, automa tion, surgery, locomotion and biomechanics. The issues addressed are fundamentally kinematic in nature, including synthesis, calibration, re dundancy, force control, dexterity, inverse and forward kinematics, kine matic singularities, as well as over-constrained systems. Methods used include line geometry, quaternion algebra, screw algebra, and linear alge bra. These methods are applied to both parallel and serial multi-degree of-freedom systems. The results should interest researchers, teachers and students, in fields of engineering and mathematics related to robot theory, design, control and application. This is the sixth book of the series Advances in Robot Kinematics published by Kluwer. The contributions in this book had been rigorously reviewed by in dependent reviewers and fifty one articles had been recommended for publication. They were introduced in seven chapters. These articles were also reported and discussed at the ninth international symposium on Advances in Robot Kinematics which was held in June 2004 in Sestri Levante in Italy. Indexed in Conference Proceedings Citation Index- Science (CPCI-S)
This book aims at reporting some of the most challenging open problems of control theoretic nature raised by robotics applications. Topics covered in the book represent many of the most innovative areas in contemporary robotics research, with special emphasis on vision, sensory-feedback control, human-centered robotics, manipulation, planning, flexible and cooperative robots, or assembly systems. The basic idea behind the book is to present the variety of innovative applications and related technology demands that arise from robotics and automation to a larger community, including in particular, researchers in automatic control, applied mathematics, mechanical engineering, or computer science. The book is intended for an audience of researchers and graduate students in those disciplines and in robotics. It is the outcome of a workshop held in Las Vegas, Nevada on December 14, 2002 jointly sponsored by the IEEE Control Systems Society and the IEEE Robotics and Automation Society.
This authoritative reference work will provide readers with a complete overview of artificial intelligence (AI), including its historic development and current status, existing and projected AI applications, and present and potential future impact on the United States and the world. Some people believe that artificial intelligence (AI) will revolutionize modern life in ways that improve human existence. Others say that the promise of AI is overblown. Still others contend that AI applications could pose a grave threat to the economic security of millions of people by taking their jobs and otherwise rendering them "obsolete"-or, even worse, that AI could actually spell the end of the human race. This volume will help users understand the reasons AI development has both spirited defenders and alarmed critics; explain theories and innovations like Moore's Law, mindcloning, and Technological Singularity that drive AI research and debate; and give readers the information they need to make their own informed judgment about the promise and peril of this technology. All of this coverage is presented using language and terminology accessible to a lay audience. Introduction explaining the historical evolution of AI Chronology of important AI-related events Authoritative entries on leading pioneers, entrepreneurs, and thinkers; AI concepts and theories; AI's potential impact on different facets of society; and major movies and other cultural touchstones exploring AI technology
This book presents a collection of papers from the International Symposium in Robotics Research (ISRR01). The goal of the symposium was to bring together active, leading robotics researchers from academia, government, and industry, to define the state of the art in robotics and its future direction.
An unmanned aerial vehicle (UAV) is an aircraft that is equipped with necessary data processing units, sensors, automatic control and communications systems, and is capable of performing autonomously flight missions without a human pilot. Unmanned Rotorcraft Systems provides a complete treatment of the design of fully autonomous miniature rotorcraft UAVs. It is an integration of advanced technologies developed in communications, computing and control areas. In particular, it focuses on: the systematic hardware construction; software systems integration; aerodynamic modeling; and automatic flight control system design. Emphasis is extended to the cooperative control and flight formation of multiple UAVs, and vision-based ground target tracking and landing on moving platforms. Other issues such as the development of GPSless indoor micro aerial vehicles and vision-based navigation are also highlighted. The proposed monograph aims to explore the research and development of fully functional miniature UAV (unmanned-aerial-vehicle) rotorcraft. This consists of a small-scale basic rotorcraft with all necessary accessories onboard, and a ground station. The unmanned system is an integration of advanced technologies developed in communications, computing and control areas. It is an excellent testing ground for trialing and implementing modern control techniques. It is however a highly challenging process. The aerodynamics of a small-scale rotorcraft such as a hobby helicopter are similar to its full-scale counterpart but has some unique characteristics, such as the utilization of stabilizer bar and higher main/tail rotors rotation speed. Besides these, the strict limitation on payload also increases the difficulty on upgrading a small-scale rotorcraft to a UAV with full capacities. Based on its various characteristics and limitations, a light-weight but effective onboard computer system with corresponding onboard/ground software should be carefully designed to realize the system identification and automatic flight requirements. These issues will be addressed in detail in this monograph. Research on the following will be detailed: utilizing the vision-based system for accomplishing ground target tracking; attacking and landing; cooperative control and flight formation of muitiple unmanned rotorcraft; future research directions on the related areas. The book will be a good reference for researchers and students working on the related subjects. Unmanned Rotorcraft Systems will be of great value to practicing engineers in rotorcraft industries and to researchers in areas related to the development of unmanned systems in general. It may be used as a reference for advanced undergraduate and graduate students in aeronautics and astrinautics, electrical and mechanical engineering."
Theory of mechanisms is an applied science of mechanics that studies the relationship between geometry, mobility, topology, and relative motion between rigid bodies connected by geometric forms. Recently, knowledge in kinematics and mechanisms has considerably increased, causing a renovation in the methods of kinematic analysis. With the progress of the algebras of kinematics and the mathematical methods used in the optimal solution of polynomial equations, it has become possible to formulate and elegantly solve problems. Mechanisms: Kinematic Analysis and Applications in Robotics provides an updated approach to kinematic analysis methods and a review of the mobility criteria most used in planar and spatial mechanisms. Applications in the kinematic analysis of robot manipulators complement the material presented in the book, growing in importance when one recognizes that kinematics is a basic area in the control and modeling of robot manipulators.
Building a robot that learns to perform a task has been acknowledged as one of the major challenges facing artificial intelligence. Self-improving robots would relieve humans from much of the drudgery of programming and would potentially allow operation in environments that were changeable or only partially known. Progress towards this goal would also make fundamental contributions to artificial intelligence by furthering our understanding of how to successfully integrate disparate abilities such as perception, planning, learning and action. Although its roots can be traced back to the late fifties, the area of robot learning has lately seen a resurgence of interest. The flurry of interest in robot learning has partly been fueled by exciting new work in the areas of reinforcement earning, behavior-based architectures, genetic algorithms, neural networks and the study of artificial life. Robot Learning gives an overview of some of the current research projects in robot learning being carried out at leading universities and research laboratories in the United States. The main research directions in robot learning covered in this book include: reinforcement learning, behavior-based architectures, neural networks, map learning, action models, navigation and guided exploration. |
![]() ![]() You may like...
Modeling, Simulation and Optimization of…
Katja Mombaur, Karsten Berns
Hardcover
Foundations and Methods in Combinatorial…
Israel Cesar Lerman
Hardcover
R4,488
Discovery Miles 44 880
Multilevel and Longitudinal Modeling…
Ronald H Heck, Scott L. Thomas, …
Paperback
R1,623
Discovery Miles 16 230
Proceedings of UASG 2019 - Unmanned…
Kamal Jain, Kourosh Khoshelham, …
Hardcover
R5,647
Discovery Miles 56 470
Discrete Choice Analysis with R
Antonio Paez, Genevieve Boisjoly
Hardcover
R3,552
Discovery Miles 35 520
Corpus Linguistics and Statistics with R…
Guillaume Desagulier
Hardcover
R4,502
Discovery Miles 45 020
Basic Statistics - An Introduction with…
Tenko. Raykov, George A Marcoulides
Hardcover
R3,956
Discovery Miles 39 560
|