![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > Robotics
Robotic Sailing 2017. This book contains the peer-reviewed papers presented at the 10th International Robotic Sailing Conference which was organized in conjunction with the 10th World Robotic Sailing Championship held in Horten, Norway the 4th-9th of September 2017. The seven papers cover topics of interest for autonomous robotic sailing which represents some of the most challenging research and development areas. The book is divided into two parts. The first part contains papers which focus on the design of sails and software for the assessment and predication of sailboat performance as well as software platforms and middleware for sailboat competition and research. The second part includes algorithms and strategies for navigation and collision avoidance on local, mid- and long range. The differences in approach in the included papers show that robotic sailing is still an emerging cross-disciplinary science. The multitude of suggestions to the specific problems of prediction and simulation of sailboats as well as the challenges of route planning, anti-grounding and collision avoidance are good indicators of science in its infancy. Hence, we may expect the future to hold great advances for robotic sailing.
By the dawn of the new millennium, robotics has undergone a major tra- formation in scope and dimensions. This expansion has been brought about bythematurityofthe?eldandtheadvancesinitsrelatedtechnologies.From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and communities, providingsupportinservices, entertainment, education, heal- care, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across - verse research areas and scienti?c disciplines, such as: biomechanics, haptics, neurosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are pr- ing an abundant source of stimulation and insights for the ?eld of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their signi?cance and quality. It is our hope that the wider dissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing ?
Rescue Robotics presents the most significant findings of the DDT Project on robots and systems for urban search and rescue. This project was launched by the Japanese government in 2002 with the aim of applying a wide variety of robotics technologies to find a solution to the problem of disaster response, especially urban search and rescue in large-scale earthquakes. From 2002 to 2007 more than 100 researchers took part in the DDT Project, coming from a wide spectrum of research and development to make up four research groups: Aerial Robot Systems MU (Mission Unit), Information Infrastructure System MU, In-Rubble Robot System MU, and On-Rubble Robot System MU. This book discusses their development and testing of various robotic systems and technologies such as serpentine robots, traced vehicles, intelligent human interface and data processing, as well as analysing and verifying the results of these experiments. Rescue Robotics will be of interest to researchers and students, but will also prove useful for emergency response personnel. It offers an insight into the state of the art of rescue robotics and its readers will benefit from a knowledge of the advanced technologies involved in this field.
This book presents recent advances in the field of intelligent systems. Composed of fourteen selected chapters, it covers a wide range of research that varies from applications in industrial data science to those in applied science. Today the word INNOVATION is more and more connected with the words INTELLIGENT and SECURITY, as such the book discusses the theory and applications of hot topics such as big data, education applications of robots with different levels of autonomy, knowledge-based modeling and control of complex dynamical systems, sign-based synthesis of behavior, security issues with intelligent systems, innovative intelligent control design, neuromorphic computation, data-driven classification, intelligent modeling and measurement innovations, multisensor data association, personal education assistants, a modern production architecture, study of peer review and scientometrics, intelligent research on bug report data, and clustering non-Gaussian data. The broad and varied research discussed represents the mainstream of contemporary intelligent innovations that are slowly but surely changing the world.
This unique reference represents a cross-section of forefront robotics research, ranging from robotics and systems to learning, autonomy and failure detection, from vision and navigation to localization and mapping, which are based on the papers presented at the 1st European Robotics Symposium (EUROS-06) held in Palermo, Italy from 16-18 March, 2006. The European Robotics Symposium (EUROS) is a brand-new International scientific event promoted by EURON, the European Robotics Network.
This book reports on the latest advances in concepts and further development of principal component analysis (PCA), discussing in detail a number of open problems related to dimensional reduction techniques and their extensions. It brings together research findings, previously scattered throughout many scientific journal papers worldwide, and presents them in a methodologically unified form. Offering vital insights into the subject matter in self-contained chapters that balance the theory and concrete applications, and focusing on open problems, it is essential reading for all researchers and practitioners with an interest in PCA
Digital Twins for Healthcare: Design, Challenges and Solutions establishes the state-of-art in the specification, design, creation, deployment and exploitation of digital twins' technologies for healthcare and wellbeing. A digital twin is a digital replication of a living or non-living physical entity. When data is transmitted seamlessly, it bridges the physical and virtual worlds, thus allowing the virtual entity to exist simultaneously with the physical entity. A digital twin facilitates the means to understand, monitor, and optimize the functions of the physical entity and provide continuous feedback. It can be used to improve citizens' quality of life and wellbeing in smart cities and the virtualization of industrial processes.
This book includes papers presented at the International Conference "Educational Robotics in the Maker Era - EDUROBOTICS 2020", Online, February 2021. The contributions cover a variety of topics useful for teacher education and for designing learning by making activities for children and youth, with an emphasis on modern low-cost technologies (including block-based programming environments, Do-It-Yourself electronics, 3D printed artifacts, the use of intelligent distributed systems, the IoT technology, and gamification) in formal and informal education settings. This collection of contributions (17 chapters and 2 short papers) provides researchers and practitioners the latest advances in educational robotics in a broader sense focusing on science, technology, engineering, arts, and mathematics (STEAM) education. Teachers and educators at any school level can find insights and inspirations into how educational robotics can promote technological interest and 21st-century skills: creativity, critical thinking, team working, and problem-solving with special emphasis on new emerging making technologies.
This book offers the first systematic guide to machine ethics, bridging between computer science, social sciences and philosophy. Based on a dialogue between an AI scientist and a novelist philosopher, the book discusses important findings on which moral values machines can be taught and how. In turn, it investigates what kind of artificial intelligence (AI) people do actually want. What are the main consequences of the integration of AI in people's every-day life? In order to co-exist and collaborate with humans, machines need morality, but which moral values should we teach them? Moreover, how can we implement benevolent AI? These are just some of the questions carefully examined in the book, which offers a comprehensive account of ethical issues concerning AI, on the one hand, and a timely snapshot of the power and potential benefits of this technology on the other. Starting with an introduction to common-sense ethical principles, the book then guides the reader, helping them develop and understand more complex ethical concerns and placing them in a larger, technological context. The book makes these topics accessible to a non-expert audience, while also offering alternative reading pathways to inspire more specialized readers.
Robotized Transcranial Magnetic Stimulation describes the methods needed to develop a robotic system that is clinically applicable for the application of transcranial magnetic stimulation (TMS). Chapter 1 introduces the basic principles of TMS and discusses current developments towards robotized TMS. Part I (Chapters 2 and 3) systematically analyzes and clinically evaluates robotized TMS. More specifically, it presents the impact of head motion on the induced electric field. In Part II (Chapters 3 to 8), a new method for a robust robot/camera calibration, a sophisticated force-torque control with hand-assisted positioning, a novel FTA-sensor for system safety, and techniques for direct head tracking, are described and evaluated. Part III discusses these developments in the context of safety and clinical applicability of robotized TMS and presents future prospects of robotized TMS. Robotized Transcranial Magnetic Stimulation is intended for researchers as a guide for developing effective robotized TMS solutions. Professionals and practitioners may also find the book valuable.
This book presents techniques that enable mobile manipulation robots to autonomously adapt to new situations. Covers kinematic modeling and learning; self-calibration; tactile sensing and object recognition; imitation learning and programming by demonstration.
From the reviews: "The book is an excellent combination of theory and real-world applications. Each application not only demonstrates the power of the theoretical results but also is important on its own behalf." IEEE Control Systems Magazine
Multi-agent systems have numerous civilian, homeland security, and military applications; however, for all these applications, communication bandwidth, sensing range, power constraints, and stealth requirements preclude centralized command and control. The alternative is distributed coordination, which is more promising in terms of scalability, robustness, and flexibility. Distributed Coordination of Multi-agent Networks introduces problems, models, and issues such as collective periodic motion coordination, collective tracking with a dynamic leader, and containment control with multiple leaders, and explores ideas for their solution. Solving these problems extends the existing application domains of multi-agent networks; for example, collective periodic motion coordination is appropriate for applications involving repetitive movements, collective tracking guarantees tracking of a dynamic leader by multiple followers in the presence of reduced interaction and partial measurements, and containment control enables maneuvering of multiple followers by multiple leaders. The authors models for distributed coordination arise from physical constraints and the complex environments in which multi-agent systems operate; they include Lagrangian models more realistic for mechanical-systems modeling than point models and fractional-order systems which better represent the consequences of environmental complexity. Other issues addressed in the text include the time delays inherent in networked systems, optimality concerns associated with the deisgn of energy-efficent algorithms, and the use of sampled-data settings in systems with intermittent neightbor-neighbor contact. Researchers, graduate students, and engineers interested in the field of multi-agent systems will find this monograph useful in introducing them to presently emerging research directions and problems in distributed coordination of multi-agent networks. The Communications and Control Engineering series reports major technological advances which have potential for great impact in the fields of communication and control. It reflects research in industrial and academic institutions around the world so that the readership can exploit new possibilities as they become available.
Cable-driven parallel robots are a new kind of lightweight manipulators with excellent scalability in terms of size, payload, and dynamics capacities. For the first time, a comprehensive compendium is presented of the field of cable-driven parallel robots. A thorough theory of cable robots is setup leading the reader from first principles to the latest results in research. The main topics covered in the book are classification, terminology, and fields of application for cable-driven parallel robots. The geometric foundation of the standard cable model is introduced followed by statics, force distribution, and stiffness. Inverse and forward kinematics are addressed by elaborating efficient algorithms. Furthermore, the workspace is introduced and different algorithms are detailed. The book contains the dynamic equations as well as simulation models with applicable parameters. Advanced cable models are described taking into account pulleys, elastic cables, and sagging cables. For practitioner, a descriptive design method is stated including methodology, parameter synthesis, construction design, component selection, and calibration. Rich examples are presented by means of simulation results from sample robots as well as experimental validation on reference demonstrators. The book contains a representative overview of reference demonstrator system. Tables with physical parameters for geometry, cable properties, and robot parameterizations support case studies and are valuable references for building custom cable robots. For scientist, the book provides the starting point to address new scientific challenges as open problems are named and a commented review of the literature on cable robot with more than 500 references are given.
Provides a comprehensive overview and introduction to the concepts, methodologies, analysis, design and applications of metasynthetic computing and engineering. The author: * Presents an overview of complex systems, especially open complex giant systems such as the Internet, complex behavioural and social problems, and actionable knowledge discovery and delivery in the big data era. * Discusses ubiquitous intelligence in complex systems, including human intelligence, domain intelligence, social intelligence, network intelligence, data intelligence and machine intelligence, and their synergy through metasynthetic engineering. * Explains the concept and methodology of human-centred, human-machine-cooperated qualitative-to-quantitative metasynthesis for understanding and managing open complex giant systems, and its computing approach: metasynthetic computing. * Introduces techniques and tools for analysing and designing problem-solving systems for open complex problems and systems. Metasynthetic Computing and Engineering uses the systematology methodology in addressing system complexities in open complex giant systems, for which it may not only be effective to apply reductionism or holism. The book aims to encourage and inspire discussions, design, implementation and reflection of effective methodologies and tools for computing and engineering open complex systems and problems. Researchers, research students and practitioners in complex systems, artificial intelligence, data science, computer science, and even system science, cognitive science, behaviour science, and social science, will find this book invaluable.
This monograph has arisen from the multidisciplinary research extending over biology, robotics and hybrid systems theory. It is inspired by modeling reactive behavior of the immune system cell population, where each cell is considered an independent agent. The authors formulate the optimal control of maximizing the probability of robotic presence in a given region and discuss the application of the Minimum Principle for partial differential equations to this problem.
This book will help researchers and engineers in the design of ethical systems for robots, addressing the philosophical questions that arise and exploring modern applications such as assistive robots and self-driving cars. The contributing authors are among the leading academic and industrial researchers on this topic and the book will be of value to researchers, graduate students and practitioners engaged with robot design, artificial intelligence and ethics.
Societies survive in their environment and compete with each other depending on the technology they develop. Economic, military and political power are directly related to the available technology, while access to technology is key to the well-being of our societies at the individual, community and national level. The Robotics Divide analyzes how robotics will shape our societies in the twenty-first century; a time when industrial and service robotics, particularly for military and aerospace purposes, will become an essential technology. The book, written by experts in the field, focuses on the main technological trends in the field of robotics, and the impact that robotics will have on different facets of social life. By doing so, the authors aim to open the "black box" of a technology which, like any other, is designed, implemented and evaluated according to the economic and cultural patterns of a cosmopolitan society, as well as its relations of power. The Robotics Divide explores future developments in robotics technology and discusses the model of technological development and the implementation of robotics in this competitive market economy. Then the authors examine to what extent it is possible to determine the characteristic features of the robotic divide, namely in what ways the robotic divide differs from the digital divide, and how a model to integrate this technology can be developed without reproducing patterns of inequality and power that have characterized the advent of previous technologies. These issues - inequality, robotics and power - are of concern to robotics and advanced automation engineers, social scientists, economists and science policy experts alike.
TheThird International Workshop on Multi-Robot Systems was held in March 2005 at the Naval Research Laboratory in Washington, D. C. , USA. Bringing together leading researchers and government sponsors for three days of technicalinterchange on multi-robot systems, theworkshop follows two previous highly successful gatherings in 2002 and 2003. Likethe previous two workshops, the meeting began with presentations byvarious government p- gram managers describing application areas and programs with an interest in multi-robot systems. U. S. Government representatives were on handfrom theOf?ce of Naval Research and several other governmental of?ces. Top - searchers inthe ?eld then presented their current activities in many areas of multi-robot systems. Presentations spannedawide rangeof topics, incl- ing task allocation, coordination in dynamicenvironments, information/sensor sharing andfusion, distributed mapping and coverage, motion planning and control, human-robot interaction, and applications of multi-robot systems. All presentations were given in a single-track workshop format. This proce- ings documents the work presented at the workshop. The research presen- tions were followed by panel discussions, in which all participants interacted to highlight the challenges of this ?eld and to develop possible solutions. In addition to the invited research talks, researchers and students were given an opportunity to present their work at poster sessions. We would like to thank the Naval Research Laboratory for sponsoring this workshop and providing the - cilitiesforthesemeetingstotakeplace. WeareextremelygratefultoMagdalena Bugajska, Paul Wiegand, and Mitchell A. Potter, for their vital help (and long hours) in editing these proceedings and to Michelle Caccivio for providing the administrative support to the workshop.
Written by leading international experts, this volume presents contributions establishing the feasibility of human language-like communication with robots. The book explores the use of language games for structuring situated dialogues in which contextualized language communication and language acquisition can take place. Within the text are integrated experiments demonstrating the extensive research which targets artificial language evolution. Language Grounding in Robots uses the design layers necessary to create a fully operational communicating robot as a framework for the text, focusing on the following areas: Embodiment; Behavior; Perception and Action; Conceptualization; Language Processing; Whole Systems Experiments. This book serves as an excellent reference for researchers interested in further study of artificial language evolution.
In 1998 the chairman of the Russian National Committee of TMM Professor Arcady Bessonov, recommended one of authors of this book to be come a member of the IFToMM Permanent Commission on the History of Mechanisms and Machines Sciences (PC HMMS). Willy-nilly from this time the history of technique, as hobby passed on to a serious the employment in the history of engineering science. Interest history of a subject is natural for Professor, a leading a course of Theory of Mechanisms and Machines in Bauman University. This interest is supported by the fact that Bauman University is one of the oldest technical universities in Russia, and the course "Applied Mechanics" - later "Theory of Mechanisms and Machines" was the first systematic course in Russia. The second author supervises a cycle of laboratory works on TMM. Models of mechanisms are placed in laboratory in show-windows of ancient cases quite possibly coevals of the first course. He became interested in contents of these cases: firstly in models, and then in their origin. Later he occupied himself with the creation of a web-site "The Collection of mechanisms in department TMM in Bauman University". Gradually both authors had the idea of cooperation, although several years previously, we could not imagine this happening. We took an active part in the work of PC HMMS from 2000. It was promoted by of chairman of the commission Professor Marco Ceccarelli.
This book presents the most recent research advances in the theory, design, control, and application of robotic systems, which are intended for a variety of purposes such as manipulation, manufacturing, automation, surgery, locomotion, and biomechanics.
This book presents the latest information on the intelligent CNC machine tool spindle system, which integrates various disciplines such as mechanical engineering, control engineering, computer science and information technology. It describes a prediction method and model for temperature rise and thermal deformation in motorized spindles and proposes an intelligent stator resistance identification method to reduce the torque ripple of motorized spindles under direct torque control. Further, it discusses the on-line dynamic balance method for NC machine tool spindles. The biogeographic optimization algorithm and hybrid intelligent algorithm presented here were first applied in the field of motorized spindle performance control. In turn, the book presents extensive motorized spindle performance test data and includes detailed examples of how intelligent algorithms can be applied to motor spindle stator resistance identification, temperature field prediction and on-line dynamic balance. In summary, the book provides readers with the latest tools for designing, testing and implementing intelligent motorized spindle systems in terms of the basic theory, technological applications and future prospects, and offers a wealth of practical information for researchers in mechanical engineering, especially in the area of control systems. |
![]() ![]() You may like...
Handbook of Research on Modeling…
Ahmad Taher Azar, Nashwa Ahmad Kamal
Hardcover
R8,895
Discovery Miles 88 950
Robotics Software Design and Engineering
Alejandro Rafael Garcia Ramirez, Augusto Loureiro da Costa
Hardcover
R3,337
Discovery Miles 33 370
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,415
Discovery Miles 34 150
Handbook of Research on the Internet of…
Rajesh Singh, Anita Gehlot, …
Hardcover
R8,788
Discovery Miles 87 880
Artificial Intelligence for Future…
Rabindra Nath Shaw, Ankush Ghosh, …
Paperback
R4,106
Discovery Miles 41 060
Design and Control Advances in Robotics
Mohamed Arezk Mellal
Hardcover
R8,238
Discovery Miles 82 380
Driving Innovation and Productivity…
Ardavan Amini, Stephen Bushell, …
Hardcover
R7,231
Discovery Miles 72 310
|