Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > Robotics
Although parallel robots are known to offer many advantages with respect to accuracy, dynamics, and stiffness, major breakthroughs in industrial applications have not yet taken place. This is due to a knowledge gap preventing fast and precise execution of industrial handling and assembly tasks. This book focuses on the design, modeling, and control of innovative parallel structures as well as the integration of novel machine elements. Special attention is paid to the integration of active components into lightweight links and passive joints. In addition, new control concepts are introduced to minimize structural vibrations. Although the optimization of robot systems itself allows a reduction of cycle times, these can be further decreased by improved path planning, robot programming, and automated assembly planning concepts described by 25 contributions within this book. The content of this volume is subdivided into four main parts dealing with Modeling and Design, System Implementation, Control and Programming as well as Adaptronics and Components. This book is aimed at researchers and postgraduates working in the field of parallel robots as well as practicing engineers dealing with industrial robot development and robotic applications.
Each of the chapters in this volume devotes considerable attention to defining and elaborating the notion of the frame problem-one of the "hard problems" of artificial intelligence. Not only do the chapters clarify the problems at hand, they shed light on the different approaches taken by those in artificial intelligence and by certain philosophers who have been concerned with related problems in their field. The book should therefore not be read merely as a discussion of the frame problem narrowly conceived, but also as a general analysis of what could be a major challenge to the design of computer systems exhibiting general intelligence.
This book presents recent advances in robot control theory on task space sensory feedback control of robot manipulators. By using sensory feedback information, the robot control systems are robust to various uncertainties in modelling and calibration errors of the sensors. Several sensory task space control methods that do not require exact knowledge of either kinematics or dynamics of robots, are presented. Some useful methods such as approximate Jacobian control, adaptive Jacobian control, region control and multiple task space regional feedback are included. These formulations and methods give robots a high degree of flexibility in dealing with unforeseen changes and uncertainties in its kinematics and dynamics, which is similar to human reaching movements and tool manipulation. It also leads to the solution of several long-standing problems and open issues in robot control, such as force control with constraint uncertainty, control of multi-fingered robot hand with uncertain contact points, singularity issue of Jacobian matrix, global task-space control, which are also presented in this book. The target audience for this book includes scientists, engineers and practitioners involved in the field of robot control theory.
The book explores technological advances in the fourth industrial revolution (4IR), which is based on a variety of technologies such as artificial intelligence, Internet of Things, machine learning, big data, additive printing, cloud computing, and virtual and augmented reality. Critically analyzing the impacts and effects of these disruptive technologies on various areas, including economics, society, business, government, labor, law, and environment, the book also provides a broad overview of 4IR, with a focus on technologies, to allow readers to gain a deeper understanding of the recent advances and future trajectories. It is intended for researchers, practitioners, policy-makers and industry leaders.
This book contains selected papers that address a variety of topics related to the design, development and operation of unmanned and fully autonomous sailing boats. These papers were presented in the 9th International Robotic Sailing Conference, in association with the 9th World Robotic Sailing Championship that took place in Viana do Castelo, Portugal from the 5th to 10th of September 2016. The book is divided in three parts, each focusing on key aspects of robotic sailing. The first part addresses the design, construction and validation of autonomous sailboat platforms, including their rigs, appendages and control mechanisms. The second part is devoted to the development of sensors and algorithms to enhance the performance of robotic sailing boats, in terms of their speed, course control and manoeuvring ability. Finally, the papers in the last part are dedicated to the improvement of behaviours required for the accomplishment of complex autonomous missions. Robotic sailing is a relatively new multidisciplinary area of research, with a recognized great potential for persistent ocean observation. Using the wind for boat propulsion is something mankind has been doing for centuries. Automating and optimizing the sailing process in the harsh marine environment is an ever present challenge which is now promising to bear fruit.
This volume is a collection of research studies on the modeling of emotions in complex autonomous systems. Several experts in the field are reporting their efforts and reviewing the literature in order to shed lights on how the processes of coding and decoding emotional states took place in humans, which are the physiological, physical, and psychological variables involved, invent new mathematical models and algorithms to describe them, and motivate these investigations in the light of observable societal changes and needs, such as the aging population and the cost of health care services. The consequences are the implementation of emotionally and socially believable machines, acting as helpers into domestic spheres, where emotions drive behaviors and actions. The contents of the book are highly multidisciplinary since the modeling of emotions in robotic socially believable systems requires a holistic perspective on topics coming from different research domains such as computer science, engineering, sociology, psychology, linguistic, and information communication. The book is of interest both to experts and students since last research works on a so complex multidisciplinary topic are described in a neat and didactical scientific language.
Modern technical advancements in areas such as robotics, multi-body systems, spacecraft, control, and design of complex mechanical devices and mechanisms in industry require the knowledge to solve advanced concepts in dynamics. "Mechanisms and Robots Analysis with MATLAB" provides a thorough, rigorous presentation of kinematics and dynamics. The book uses MATLAB as a tool to solve problems from the field of mechanisms and robots. The book discusses the tools for formulating the mathematical equations, and also the methods of solving them using a modern computing tool like MATLAB. An emphasis is placed on basic concepts, derivations, and interpretations of the general principles. The book is of great benefit to senior undergraduate and graduate students interested in the classical principles of mechanisms and robotics systems. Each chapter introduction is followed by a careful step-by-step presentation, and sample problems are provided at the end of every chapter.
MR technologies play an increasing role in different aspects of human-robot interactions. The visual combination of digital contents with real working spaces creates a simulated environment that is set out to enhance these aspects. This book presents and discusses fundamental scientific issues, technical implementations, lab testing, and industrial applications and case studies of Mixed Reality in Human-Robot Interaction. It is a reference book that not only acts as meta-book in the field that defines and frames Mixed Reality use in Human-Robot Interaction, but also addresses up-coming trends and emerging directions of the field. This volume offers a comprehensive reference volume to the state-of-the-art in the area of MR in Human-Robot Interaction, an excellent mix of contributions from leading researcher/experts in multiple disciplines from academia and industry. All authors are experts and/or top researchers in their respective areas and each of the chapters has been rigorously reviewed for intellectual contents by the editorial team to ensure a high quality. This book provides up-to-date insight into the current research topics in this field as well as the latest technological advancements and the best working examples.
This book presents, in a comprehensive way, current unmanned aviation regulation, airworthiness certification, special aircraft categories, pilot certification, federal aviation requirements, operation rules, airspace classes and regulation development models. It discusses unmanned aircraft systems levels of safety derived mathematically based on the corresponding levels for manned aviation. It provides an overview of the history and current status of UAS airworthiness and operational regulation worldwide. Existing regulations have been developed considering the need for a complete regulatory framework for UAS. It focuses on UAS safety assessment and functional requirements, achieved in terms of defining an "Equivalent Level of Safety," or ELOS, with that of manned aviation, specifying what the ELOS requirement entails for UAS regulations. To accomplish this, the safety performance of manned aviation is first evaluated, followed by a novel model to derive reliability requirements for achieving target levels of safety (TLS) for ground impact and mid-air collision accidents.It discusses elements of a viable roadmap leading to UAS integration in to the NAS. For this second edition of the book almost all chapters include major updates and corrections. There is also a new appendix chapter.
The integrated and advanced science research topic
Man-Machine-Environment system engineering (MMESE) was first
established in China by Professor Shengzhao Long in 1981, with
direct support from one of the greatest modern Chinese scientists,
Xuesen Qian. In a letter to Shengzhao Long from October 22nd, 1993,
Xuesen Qian wrote: You have created a very important modern science
and technology in China
Can we make machines that think and act like humans or other natural intelligent agents? The answer to this question depends on how we see ourselves and how we see the machines in question. Classical AI and cognitive science had claimed that cognition is computation, and can thus be reproduced on other computing machines, possibly surpassing the abilities of human intelligence. This consensus has now come under threat and the agenda for the philosophy and theory of AI must be set anew, re-defining the relation between AI and Cognitive Science. We can re-claim the original vision of general AI from the technical AI disciplines; we can reject classical cognitive science and replace it with a new theory (e.g. embodied); or we can try to find new ways to approach AI, for example from neuroscience or from systems theory. To do this, we must go back to the basic questions on computing, cognition and ethics for AI. The 30 papers in this volume provide cutting-edge work from leading researchers that define where we stand and where we should go from here.
This monograph describes a new family of algorithms for the simultaneous localization and mapping (SLAM) problem in robotics, called FastSLAM. The FastSLAM-type algorithms have enabled robots to acquire maps of unprecedented size and accuracy, in a number of robot application domains and have been successfully applied in different dynamic environments, including a solution to the problem of people tracking.
Computational Biomechanics for Medicine: Solid and fluid mechanics for the benefit of patients contributions and papers from the MICCAI Computational Biomechanics for Medicine Workshop help in conjunction with Medical Image Computing and Computer Assisted Intervention conference (MICCAI 2019) in Shenzhen, China. The content is dedicated to research in the field of methods and applications of computational biomechanics to medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, analysis of injury mechanisms, implant and prostheses design, as well as artificial organ design and medical robotics. These proceedings appeal to researchers, students and professionals in the field.
The book covers a comprehensive overview of the theory, methods, applications and tools of cognition and recognition. The book is a collection of best selected papers presented in the International Conference on Cognition and Recognition 2016 (ICCR 2016) and helpful for scientists and researchers in the field of image processing, pattern recognition and computer vision for advance studies. Nowadays, researchers are working in interdisciplinary areas and the proceedings of ICCR 2016 plays a major role to accumulate those significant works at one place. The chapters included in the proceedings inculcates both theoretical as well as practical aspects of different areas like nature inspired algorithms, fuzzy systems, data mining, signal processing, image processing, text processing, wireless sensor networks, network security and cellular automata.
This book addresses various aspects of acoustic-phonetic analysis, including voice quality and fundamental frequency, and the effects of speech fluency and non-native accents, by examining read speech, public speech, and conversations. Voice is a sexually dimorphic trait that can convey important biological and social information about the speaker, and empirical findings suggest that voice characteristics and preferences play an important role in both intra- and intersexual selection, such as competition and mating, and social evaluation. Discussing evaluation criteria like physical attractiveness, pleasantness, likability, and even persuasiveness and charisma, the book bridges the gap between social and biological views on voice attractiveness. It presents conceptual, methodological and empirical work applying methods such as passive listening tests, psychoacoustic rating experiments, and crowd-sourced and interactive scenarios and highlights the diversity not only of the methods used when studying voice attractiveness, but also of the domains investigated, such as politicians' speech, experimental speed dating, speech synthesis, vocal pathology, and voice preferences in human interactions as well as in human-computer and human-robot interactions. By doing so, it identifies widespread and complementary approaches and establishes common ground for further research.
This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. One barrier to their widespread deployment is that they are mainly limited to tasks where it is possible to hand-program behaviors for every situation that may be encountered. For robots to meet their potential, they need methods that enable them to learn and adapt to novel situations that they were not programmed for. Reinforcement learning (RL) is a paradigm for learning sequential decision making processes and could solve the problems of learning and adaptation on robots. This book identifies four key challenges that must be addressed for an RL algorithm to be practical for robotic control tasks. These RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must learn in domains with continuous state features; 3) it must handle sensor and/or actuator delays; and 4) it should continually select actions in real time. This book focuses on addressing all four of these challenges. In particular, this book is focused on time-constrained domains where the first challenge is critically important. In these domains, the agent's lifetime is not long enough for it to explore the domains thoroughly, and it must learn in very few samples.
This work addresses the challenge of providing effective cutaneous haptic feedback in robotic teleoperation, with the objective of achieving the highest degree of transparency whilst guaranteeing the stability of the considered systems. On the one hand, it evaluates teleoperation systems that provide only cutaneous cues to the operator, thus guaranteeing the highest degree of safety. This cutaneous-only approach shows intermediate performance between no force feedback and full haptic feedback provided by a grounded haptic interface, and it is best suitable for those scenarios where the safety of the system is paramount, e.g., robotic surgery. On the other hand, in order to achieve a higher level of performance, this work also investigates novel robotic teleoperation systems with force reflection able to provide mixed cutaneous and kinesthetic cues to the operator. Cutaneous cues can compensate for the temporary reduction of kinesthetic feedback necessary to satisfy certain stability conditions. This state-of-the-art volume is oriented toward researchers, educators, and students who are interested in force feedback techniques for robotic teleoperation, cutaneous device design, cutaneous rendering methods and perception studies, as well as readers from different disciplines who are interested in applying cutaneous haptic technologies and methods to their field of interest.
In this book, we present our systematic investigations into consensus in multi-agent systems. We show the design and analysis of various types of consensus protocols from a multi-agent perspective with a focus on min-consensus and its variants. We also discuss second-order and high-order min-consensus. A very interesting topic regarding the link between consensus and path planning is also included. We show that a biased min-consensus protocol can lead to the path planning phenomenon, which means that the complexity of shortest path planning can emerge from a perturbed version of min-consensus protocol, which as a case study may encourage researchers in the field of distributed control to rethink the nature of complexity and the distance between control and intelligence. We also illustrate the design and analysis of consensus protocols for nonlinear multi-agent systems derived from an optimal control formulation, which do not require solving a Hamilton-Jacobi-Bellman (HJB) equation. The book was written in a self-contained format. For each consensus protocol, the performance is verified through simulative examples and analyzed via mathematical derivations, using tools like graph theory and modern control theory. The book's goal is to provide not only theoretical contributions but also explore underlying intuitions from a methodological perspective.
This book presents hardware-efficient algorithms and FPGA implementations for two robotic tasks, namely exploration and landmark determination. The work identifies scenarios for mobile robotics where parallel processing and selective shutdown offered by FPGAs are invaluable. The book proceeds to systematically develop memory-driven VLSI architectures for both the tasks. The architectures are ported to a low-cost FPGA with a fairly small number of system gates.
This volume gathers the peer reviewed papers presented at the 4th edition of the International Workshop "Service Orientation in Holonic and Multi-agent Manufacturing - SOHOMA'14" organized and hosted on November 5-6, 2014 by the University of Lorraine, France in collaboration with the CIMR Research Centre of the University Politehnica of Bucharest and the TEMPO Laboratory of the University of Valenciennes and Hainaut-Cambresis. The book is structured in six parts, each one covering a specific research line which represents a trend in future manufacturing: (1) Holonic and Agent-based Industrial Automation Systems; (2) Service-oriented Management and Control of Manufacturing Systems; (3) Distributed Modelling for Safety and Security in Industrial Systems; (4) Complexity, Big Data and Virtualization in Computing-oriented Manufacturing; (5) Adaptive, Bio-inspired and Self-organizing Multi-Agent Systems for Manufacturing and (6) Physical Internet Simulation, Modelling and Control. There is a clear orientation of the SOHOMA'14 workshop towards complexity, which is a common view of all six parts. There is need for a framework allowing the development of manufacturing cyber physical systems including capabilities for complex event processing and data analytics which are expected to move the manufacturing domain closer towards cloud manufacturing within contextual enterprises. Recent advances in sensor, communication and intelligent computing technologies made possible the Internet connectivity of the physical world: the Physical Internet, where not only documents and images are created, shared, or modified in the cyberspace, but also the physical resources and products interact over Internet and make decisions based on shared communication.
This book provides an overview of model-based environmental visual perception for humanoid robots. The visual perception of a humanoid robot creates a bidirectional bridge connecting sensor signals with internal representations of environmental objects. The objective of such perception systems is to answer two fundamental questions: What & where is it? To answer these questions using a sensor-to-representation bridge, coordinated processes are conducted to extract and exploit cues matching robot's mental representations to physical entities. These include sensor & actuator modeling, calibration, filtering, and feature extraction for state estimation. This book discusses the following topics in depth: * Active Sensing: Robust probabilistic methods for optimal, high dynamic range image acquisition are suitable for use with inexpensive cameras. This enables ideal sensing in arbitrary environmental conditions encountered in human-centric spaces. The book quantitatively shows the importance of equipping robots with dependable visual sensing. * Feature Extraction & Recognition: Parameter-free, edge extraction methods based on structural graphs enable the representation of geometric primitives effectively and efficiently. This is done by eccentricity segmentation providing excellent recognition even on noisy & low-resolution images. Stereoscopic vision, Euclidean metric and graph-shape descriptors are shown to be powerful mechanisms for difficult recognition tasks. * Global Self-Localization & Depth Uncertainty Learning: Simultaneous feature matching for global localization and 6D self-pose estimation are addressed by a novel geometric and probabilistic concept using intersection of Gaussian spheres. The path from intuition to the closed-form optimal solution determining the robot location is described, including a supervised learning method for uncertainty depth modeling based on extensive ground-truth training data from a motion capture system. The methods and experiments are presented in self-contained chapters with comparisons and the state of the art. The algorithms were implemented and empirically evaluated on two humanoid robots: ARMAR III-A & B. The excellent robustness, performance and derived results received an award at the IEEE conference on humanoid robots and the contributions have been utilized for numerous visual manipulation tasks with demonstration at distinguished venues such as ICRA, CeBIT, IAS, and Automatica.
This volume presents a collection of research studies on sophisticated and functional computational instruments able to recognize, process, and store relevant situated interactional signals, as well as, interact with people, displaying reactions (under conditions of limited time) that show abilities of appropriately sensing and understanding environmental changes, producing suitable, autonomous, and adaptable responses to various social situations. These social robotic autonomous systems will improve the quality of life of their end-users while assisting them on several needs, ranging from educational settings, health care assistance, communicative disorders, and any disorder impairing either their physical, cognitive, or social functional activities. The multidisciplinary themes presented in the volume will be interesting for experts and students coming from different research fields and with different knowledge and backgrounds. The research reported is particularly relevant for academic centers, and Research & Development Institutions.
The primary aim of this volume is to provide researchers and engineers from both academia and industry with up-to-date coverage of recent advances in the fields of robotic welding, intelligent systems and automation. It gathers selected papers from the 2018 International Conference on Robotic Welding, Intelligence and Automation (RWIA 2018), held Oct 20-22, 2018 in Guangzhou, China. The contributions reveal how intelligentized welding manufacturing (IWM) is becoming an inescapable trend, just as intelligentized robotic welding is becoming a key technology. The volume is divided into four main parts: Intelligent Techniques for Robotic Welding, Sensing in Arc Welding Processing, Modeling and Intelligent Control of Welding Processing, and Intelligent Control and its Applications in Engineering.
Multisensor fusion systems are only practical if the algorithms used are practical and effective, and if there is efficient database support. The first part of this book discusses a wide range of issues related to the development of robust, context-sensitive, and efficient data fusion algorithms. The second part addresses database requirements, structures, and issues related to achieving overall computational efficiency. Featuring highly accessible notation, the processing model and database issues presented in the text are aimed at system developers working in sensor fusion, automatic target recognition, multiple-target tracking, robotic control, automated image understanding, and large-scale integration and fabrication. |
You may like...
Automation and Control - Theories and…
Elmer P. Dadios
Hardcover
Robotics Software Design and Engineering
Alejandro Rafael Garcia Ramirez, Augusto Loureiro da Costa
Hardcover
Hallo Robot - Meet Your New Workmate and…
Bennie Mols, Nieske Vergunst
Paperback
(1)
Design and Control Advances in Robotics
Mohamed Arezk Mellal
Hardcover
R7,967
Discovery Miles 79 670
Handbook of Research on Innovation…
Gonçalo Poeta Fernandes, António Silva Melo
Hardcover
R7,692
Discovery Miles 76 920
|