![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > Robotics
This self-contained book, written by active researchers, presents up-to-date information on smart maintenance strategies for human-robot interaction (HRI) and the associated applications of novel search algorithms in a single volume, eliminating the need to consult scattered resources. Unlike other books, it addresses maintaining a smart HRI from three dimensions, namely, hardware, cyberware, and hybrid-asset management, covering problems encountered in each through a wide variety of representative examples and elaborated illustrations. Further, the diverse mathematical models and intelligent systems constructions make the book highly practical. It enables readers interested in maintenance, robotics, and intelligent systems but perplexed by myriads of interrelated issues to grasp basic methodologies. At the same time, the referenced literature can be used as a roadmap for conducting deeper researches.
This book is the first textbook specially on multicopter systems in the world. It provides a comprehensive overview of multicopter systems, rather than focusing on a single method or technique. The fifteen chapters are divided into five parts, covering the topics of multicopter design, modeling, state estimation, control, and decision-making. It differs from other books in the field in three major respects: it is basic and practical, offering self-contained content and presenting hands-on methods; it is comprehensive and systematic; and it is timely. It is also closely related to the autopilot that users often employ today and provides insights into the code employed. As such, it offers a valuable resource for anyone interested in multicopters, including students, teachers, researchers, and engineers. This introductory text is a welcome addition to the literature on multicopter design and control, on which the author is an acknowledged authority. The book is directed to advanced undergraduate and beginning graduate students in aeronautical and control (or electrical) engineering, as well as to multicopter designers and hobbyists. ------- Professor W. Murray Wonham, University of Toronto "This is the single best introduction to multicopter control. Clear, comprehensive and progressing from basic principles to advanced techniques, it's a must read for anyone hoping to learn how to design flying robots." ------- Chris Anderson, 3D Robotics CEO.
This book focuses on the design of Robotic Flexible Assembly Cell (RFAC) with multi-robots. Its main contribution consists of a new effective strategy for scheduling RFAC in a multi-product assembly environment, in which dynamic status and multi-objective optimization problems occur. The developed strategy, which is based on a combination of advanced solution approaches such as simulation, fuzzy logic, system modeling and the Taguchi optimization method, fills an important knowledge gap in the current literature and paves the way for future research towards the goal of employing flexible assembly systems as effectively as possible despite the complexity of their scheduling.
Focussing on the key technologies in developing robots for a wide range of medical rehabilitation activities - which will include robotics basics, modelling and control, biomechanics modelling, rehabilitation strategies, robot assistance, clinical setup/implementation as well as neural and muscular interfaces for rehabilitation robot control - this book is split into two parts; a review of the current state of the art, and recent advances in robotics for medical rehabilitation. Both parts will include five sections for the five key areas in rehabilitation robotics: (i) the upper limb; (ii) lower limb for gait rehabilitation (iii) hand, finger and wrist; (iv) ankle for strains and sprains; and (v) the use of EEG and EMG to create interfaces between the neurological and muscular functions of the patients and the rehabilitation robots. Each chapter provides a description of the design of the device, the control system used, and the implementation and testing to show how it fulfils the needs of that specific area of rehabilitation. The book will detail new devices, some of which have never been published before in any journal or conference.
This book documents the state of the art in the field of ambient assisted living (AAL), highlighting the impressive potential of novel methodologies and technologies to enhance well-being and promote active ageing. The coverage is wide ranging, with sections on assistive devices, elderly people monitoring, home rehabilitation, ICT solutions for AAL, living with chronic conditions, robotic assistance for the elderly, sensing technologies for AAL, and smart housing. The book comprises a selection of the best papers presented at the 7th Italian Forum on Ambient Assisted Living (ForitAAL 2016), which was held in Pisa, Italy, in June 2016 and brought together end users, technology teams, and policy makers to develop a consensus on how to improve provision for elderly and impaired people. Readers will find that the expert contributions offer clear insights into the ways in which the most recent exciti ng advances may be expected to assist in addressing the needs of the elderly and those with chronic conditions.
This book compiles some of the latest research in cooperation between robots and sensor networks. Structured in twelve chapters, this book addresses fundamental, theoretical, implementation and experimentation issues. The chapters are organized into four parts namely multi-robots systems, data fusion and localization, security and dependability, and mobility.
This book focuses on small flying drones and their applications in conducting geographic surveys. Scholars and professionals will discover the potential of this tool, and hopefully develop a conceptual and methodological framework for doing the following things: a) Translate their data acquisition needs into specifications. (b) Use the developed specifications to choose the best accessible configuration for their drones, and (c) Design and organize effective and low-cost field deployment and flight operations by integrating technical aspects with regulatory and research requirements. Readers can apply this knowledge to work in cartography, environmental monitoring and analysis, land-use studies and landscape archaeology. Particular attention is also given to the reasons why a drone can dramatically boost a geographer's capability to understand geographic phenomena both from hard-science and humanities-oriented approach.
This book explores novel aspects of social robotics, spoken dialogue systems, human-robot interaction, spoken language understanding, multimodal communication, and system evaluation. It offers a variety of perspectives on and solutions to the most important questions about advanced techniques for social robots and chat systems. Chapters by leading researchers address key research and development topics in the field of spoken dialogue systems, focusing in particular on three special themes: dialogue state tracking, evaluation of human-robot dialogue in social robotics, and socio-cognitive language processing. The book offers a valuable resource for researchers and practitioners in both academia and industry whose work involves advanced interaction technology and who are seeking an up-to-date overview of the key topics. It also provides supplementary educational material for courses on state-of-the-art dialogue system technologies, social robotics, and related research fields.
Mechanical laws of motion were applied very early for better understanding anthropomorphic action as suggested in advance by Newton "For from hence are easily deduced the forces of machines, which are compounded of wheels, pullies, levers, cords, and weights, ascending directly or obliquely, and other mechanical powers; as also the force of the tendons to move the bones of animals". In the 19th century E.J. Marey and E. Muybridge introduced chronophotography to scientifically investigate animal and human movements. They opened the field of motion analysis by being the first scientists to correlate ground reaction forces with kinetics. Despite of the apparent simplicity of a given skilled movement, the organization of the underlying neuro-musculo-skeletal system remains unknown. A reason is the redundancy of the motor system: a given action can be realized by different muscle and joint activity patterns, and the same underlying activity may give rise to several movements. After the pioneering work of N. Bernstein in the 60's on the existence of motor synergies, numerous researchers "walking on the border" of their disciplines tend to discover laws and principles underlying the human motions and how the brain reduces the redundancy of the system. These synergies represent the fundamental building blocks composing complex movements. In robotics, researchers face the same redundancy and complexity challenges as the researchers in life sciences. This book gathers works of roboticists and researchers in biomechanics in order to promote an interdisciplinary research on anthropomorphic systems at large and on humanoid robotics in particular.
This book highlights selected papers presented at the 2nd International Symposium on Artificial Intelligence and Robotics 2017 (ISAIR2017), held in Nakamura Centenary Memorial Hall, Kitakyushu, Japan on November 25-26, 2017. Today, the integration of artificial intelligence and robotic technologies has become a topic of growing interest for both researchers and developers from academic fields and industries worldwide, and artificial intelligence is poised to become the main approach pursued in next-generation robotics research. The rapidly growing number of artificial intelligence algorithms and big data solutions has significantly extended the number of potential applications for robotic technologies. However, it also poses new challenges for the artificial intelligence community. The aim of this symposium is to provide a platform for young researchers to share the latest scientific achievements in this field, which are discussed in these proceedings.
This book describes a unified framework for networked teleoperation systems involving multiple research fields: networked control systems for linear and nonlinear forms, bilateral teleoperation, trilateral teleoperation, multilateral teleoperation and cooperative teleoperation. It closely examines networked control as a field at the intersection of systems & control and robotics and presents a number of experimental case studies on testbeds for robotic systems, including networked haptic devices, robotic network systems and sensor network systems. The concepts and results outlined are easy to understand, even for readers fairly new to the subject. As such, the book offers a valuable reference work for researchers and engineers in the fields of systems & control and robotics.
This volume comprises the latest developments in both fundamental science and patient-specific applications, discussing topics such as: cellular mechanics; injury biomechanics; biomechanics of heart and vascular system; medical image analysis; and both patient-specific fluid dynamics and solid mechanics simulations. With contributions from researchers world-wide, the Computational Biomechanics for Medicine series of titles provides an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements.
This monograph introduces novel responses to the different problems that arise when multiple robots need to execute a task in cooperation, each robot in the team having a monocular camera as its primary input sensor. Its central proposition is that a consistent perception of the world is crucial for the good development of any multi-robot application. The text focuses on the high-level problem of cooperative perception by a multi-robot system: the idea that, depending on what each robot sees and its current situation, it will need to communicate these things to its fellows whenever possible to share what it has found and keep updated by them in its turn. However, in any realistic scenario, distributed solutions to this problem are not trivial and need to be addressed from as many angles as possible. Distributed Consensus with Visual Perception in Multi-Robot Systems covers a variety of related topics such as: * distributed consensus algorithms; * data association and robustness problems; * convergence speed; and * cooperative mapping. The book first puts forward algorithmic solutions to these problems and then supports them with empirical validations working with real images. It provides the reader with a deeper understanding of the problems associated to the perception of the world by a team of cooperating robots with onboard cameras. Academic researchers and graduate students working with multi-robot systems, or investigating problems of distributed control or computer vision and cooperative perception will find this book of material assistance with their studies.
This book at hand is an appropriate addition to the field of fractional calculus applied to control systems. If an engineer or a researcher wishes to delve into fractional-order systems, then this book has many collections of such systems to work upon, and this book also tells the reader about how one can convert an integer-order system into an appropriate fractional-order one through an efficient and simple algorithm. If the reader further wants to explore the controller design for the fractional-order systems, then for them, this book provides a variety of controller design strategies. The use of fractional-order derivatives and integrals in control theory leads to better results than integer-order approaches and hence provides solid motivation for further development of control theory. Fractional-order models are more useful than the integer-order models when accuracy is of paramount importance. Real-time experimental validation of controller design strategies for the fractional-order plants is available. This book is beneficial to the academic institutes for postgraduate and advanced research-level that need a specific textbook on fractional control and its applications in srobotic manipulators. The book is also a valuable teaching and learning resource for undergraduate and postgraduate students.
This book introduces state-of-the-art models and methods based on the matrix in the field of product design and change management. It develops several types of matrix models for a broad range of applications, with the goal of efficiently finding product design solutions and proactively analyzing design change propagation. The book offers readers an extensive introduction to design automation, highlighting fundamental and innovative concepts, as well as cutting-edge technologies. Further, it familiarizes them with the latest advances in design change propagation and prediction. Lastly, the book puts forward design change-oriented matrix models and includes a proactive analysis of change propagation. The book offers a valuable resource for graduate students, researchers and engineers in the fields of product design and methodology, design automation and related areas.
This book describes the development of an integrated approach for generating the path and gait of realistic hexapod robotic systems. It discusses in detail locomation with straight-ahead, crab and turning motion capabilities in varying terrains, like sloping surfaces, staircases, and various user-defined rough terrains. It also presents computer simulations and validation using Virtual Prototyping (VP) tools and real-world experiments. The book also explores improving solutions by applying the developed nonlinear, constrained inverse dynamics model of the system formulated as a coupled dynamical problem based on the Newton-Euler (NE) approach and taking into account realistic environmental conditions. The approach is developed on the basis of rigid multi-body modelling and the concept that there is no change in the configuration of the system in the short time span of collisions.
This book gathers the outcomes of the thirteenth Workshop on the Algorithmic Foundations of Robotics (WAFR), the premier event for showcasing cutting-edge research on algorithmic robotics. The latest WAFR, held at Universidad Politecnica de Yucatan in Merida, Mexico on December 9-11, 2018, continued this tradition. This book contains fifty-four papers presented at WAFR, which highlight the latest research on fundamental algorithmic robotics (e.g., planning, learning, navigation, control, manipulation, optimality, completeness, and complexity) demonstrated through several applications involving multi-robot systems, perception, and contact manipulation. Addressing a diverse range of topics in papers prepared by expert contributors, the book reflects the state of the art and outlines future directions in the field of algorithmic robotics.
This carefully edited volume is the outcome of the eleventh edition of the Workshop on Algorithmic Foundations of Robotics (WAFR), which is the premier venue showcasing cutting edge research in algorithmic robotics. The eleventh WAFR, which was held August 3-5, 2014 at Bogazici University in Istanbul, Turkey continued this tradition. This volume contains extended versions of the 42 papers presented at WAFR. These contributions highlight the cutting edge research in classical robotics problems (e.g. manipulation, motion, path, multi-robot and kinodynamic planning), geometric and topological computation in robotics as well novel applications such as informative path planning, active sensing and surgical planning. This book - rich by topics and authoritative contributors - is a unique reference on the current developments and new directions in the field of algorithmic foundations.
This volume contains the proceedings of the 26th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2017, held at the Polytechnic University of Turin, Italy, from June 21-23, 2017. The conference brought together academic and industrial researchers in robotics from 30 countries, the majority of them affiliated to the Alpe-Adria-Danube Region, and their worldwide partners. RAAD 2017 covered all major areas of R&D and innovation in robotics, including the latest research trends. The book provides an overview on the advances in service and industrial robotics. The topics are presented in a sequence starting from the classical robotic subjects, such as kinematics, dynamics, structures, control, and ending with the newest topics, like human-robot interaction and biomedical applications. Researchers involved in the robotic field will find this an extraordinary and up-to-date perspective on the state of the art in this area.
This book seeks to interpret connections between the machine brain, mind and vision in an alternative way and promote future research into the Interdisciplinary Evolution of Machine Brain (IEMB). It gathers novel research on IEMB, and offers readers a step-by-step introduction to the theory and algorithms involved, including data-driven approaches in machine learning, monitoring and understanding visual environments, using process-based perception to expand insights, mechanical manufacturing for remote sensing, reconciled connections between the machine brain, mind and vision, and the interdisciplinary evolution of machine intelligence. This book is intended for researchers, graduate students and engineers in the fields of robotics, Artificial Intelligence and brain science, as well as anyone who wishes to learn the core theory, principles, methods, algorithms, and applications of IEMB.
This book presents advanced technologies used in practice to enable early recognition and tracking of various threats to national security. It discusses practical applications, examples and recent challenges in the application fields using sophisticated sensory devices, embedded designs and airborne and ground unmanned vehicles. Undeniably rapid advances in the development of sophisticated sensory devices, significant increases of computing power available to embedded designs and the development of airborne and ground unmanned vehicles offer almost unlimited possibilities for fighting various types of pathologies affecting our societies. The book provides scientists, researchers, engineers and graduate students involved in computer vision, image processing, data fusion, control algorithms, mechanics, data mining, navigation and integrated circuit (IC) with numerous valuable, useful and practical suggestions and solutions.
Over the past decade, industrial developments in the field of robotics have been aimed primarily at manufacturing. Many of the cases considered for automation have involved the processing of well-defined and rigid products within the motor car and aerospace industries. Current literature includes a large number of books covering both the fundamentals and applications of robots, but none of these books deals with food production as a specialist subject. In the recent past, considerable work has been done examining the use of robots for handling and processing food items. The main objective of this book is to provide an overview of specific applications in the meat, fish and poultry industries, thus increasing the awareness and confidence of the food industry in this technology and the opportunities it offers.
This book includes the original, peer-reviewed research papers from the 2nd International Conference on Electrical Systems, Technology and Information (ICESTI 2015), held in September 2015 at Patra Jasa Resort & Villas Bali, Indonesia. Topics covered include: Mechatronics and Robotics, Circuits and Systems, Power and Energy Systems, Control and Industrial Automation, and Information Theory. It explores emerging technologies and their application in a broad range of engineering disciplines, including communication technologies and smart grids. It examines hybrid intelligent and knowledge-based control, embedded systems, and machine learning. It also presents emerging research and recent application in green energy system and storage. It discusses the role of electrical engineering in biomedical, industrial and mechanical systems, as well as multimedia systems and applications, computer vision and image and signal processing. The primary objective of this series is to provide references for dissemination and discussion of the above topics. This volume is unique in that it includes work related to hybrid intelligent control and its applications. Engineers and researchers as well as teachers from academia and professionals in industry and government will gain valuable insights into interdisciplinary solutions in the field of emerging electrical technologies and its applications.
Featuring selected contributions from the 2nd International Conference on Mechatronics and Robotics Engineering, held in Nice, France, February 18-19, 2016, this book introduces recent advances and state-of-the-art technologies in the field of advanced intelligent manufacturing. This systematic and carefully detailed collection provides a valuable reference source for mechanical engineering researchers who want to learn about the latest developments in advanced manufacturing and automation, readers from industry seeking potential solutions for their own applications, and those involved in the robotics and mechatronics industry. |
![]() ![]() You may like...
|