![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > Robotics
This book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor. skills and presents tasks that need to take into account the dynamic behavior of the robot and its environment, where a kinematic movement plan is not sufficient. The book illustrates a method that learns to generalize parameterized motor plans which is obtained by imitation or reinforcement learning, by adapting a small set of global parameters and appropriate kernel-based reinforcement learning algorithms. The presented applications explore highly dynamic tasks and exhibit a very efficient learning process. All proposed approaches have been extensively validated with benchmarks tasks, in simulation and on real robots. These tasks correspond to sports and games but the presented techniques are also applicable to more mundane household tasks. The book is based on the first author s doctoral thesis, which won the 2013 EURON Georges Giralt PhD Award."
This book describes how the principle of self-sufficiency can be applied to a reconfigurable modular robotic organism. It shows the design considerations for a novel REPLICATOR robotic platform, both hardware and software, featuring the behavioral characteristics of social insect colonies. Following a comprehensive overview of some of the bio-inspired techniques already available, and of the state-of-the-art in re-configurable modular robotic systems, the book presents a novel power management system with fault-tolerant energy sharing, as well as its implementation in the REPLICATOR robotic modules. In addition, the book discusses, for the first time, the concept of "artificial energy homeostasis" in the context of a modular robotic organism, and shows its verification on a custom-designed simulation framework in different dynamic power distribution and fault tolerance scenarios. This book offers an ideal reference guide for both hardware engineers and software developers involved in the design and implementation of autonomous robotic systems.
Mechatronics, as the integrating framework of mechanical engineering, electrical engineering, computer technology, control engineering and automation forms a crucial part in the design, manufacture and maintenance of a wide range of engineering products and processes. The mechatronics itself changes rapidly in last decade, from original mixture of subfields into original approach in engineering as a technical discipline. The book you are holding is aimed to help the reader to orient in this evolving field of science and technology. "Mechatronics 2013: Recent Technological and Scientific Advances" is the fourth volume following the previous editions in 2007, 2009 and 2011, providing the comprehensive and accessible coverage of advances in mechatronics presented on the 10th International Conference Mechatronics 2013, hosted this year at the Brno University of Technology, Czech Republic. The contributions, that passed the thorough review process, give an insight into current trends in research and development among Mechatronics 2013 contributing countries, with paper topics covering design and modeling of mechatronic systems, control and automation, signal processing, robotics and others, keeping in mind the innovation benefits of mechatronics design approach, leading to the development, production and daily use of machines and devices possessing a certain degree of computer based intelligence.
This edited monograph includes state-of-the-art contributions on continuous time dynamical networks with delays. The book is divided into four parts. The first part presents tools and methods for the analysis of time-delay systems with a particular attention on control problems of large scale or infinite-dimensional systems with delays. The second part of the book is dedicated to the use of time-delay models for the analysis and design of Networked Control Systems. The third part of the book focuses on the analysis and design of systems with asynchronous sampling intervals which occur in Networked Control Systems. The last part of the book exposes several contributions dealing with the design of cooperative control and observation laws for networked control systems. The target audience primarily comprises researchers and experts in the field of control theory, but the book may also be beneficial for graduate students.
This unique book provides a bridge between digital control theory and vehicle guidance and control practice. It presents practical techniques of digital redesign and direct discrete-time design suitable for a real-time implementation of controllers and guidance laws at multiple rates and with and computational techniques. The theory of digital control is given as theorems, lemmas, and propositions. The design of the digital guidance and control systems is illustrated by means of step-by-step procedures, algorithms, and case studies. The systems proposed are applied to realistic models of unmanned systems and missiles, and digital implementation.
Simulate realistic human motion in a virtual world with an
optimization-based approach to motion prediction. With this
approach, motion is governed by human performance measures, such as
speed and energy, which act as objective functions to be optimized.
Constraints on joint torques and angles are imposed quite easily.
Predicting motion in this way allows one to use avatars to study
how and why humans move the way they do, given specific scenarios.
It also enables avatars to react to infinitely many scenarios with
substantial autonomy. With this approach it is possible to predict
dynamic motion without having to integrate equations of motion --
rather than solving equations of motion, this approach solves for a
continuous time-dependent curve characterizing joint variables
(also called joint profiles) for every degree of freedom.
This book presents an Intelligent Control Architecture (ICA) to enable multiple collaborating marine vehicles to autonomously carry out underwater intervention missions. The presented ICA is generic in nature but aimed at a case study where a marine surface craft and an underwater vehicle are required to work cooperatively. It is shown that they are capable of cooperating autonomously towards the execution of complex activities since they have different but complementary capabilities. The ICA implementation is verified in simulation, and validated in trials by means of a team of autonomous marine robots. This book also presents architectural details and evaluation scenarios of the ICA, results of simulations and trials from different maritime operations, and future research directions.
The International Symposium on Experimental Robotics (ISER) is a series of bi-annual meetings which are organized in a rotating fashion around North America, Europe and Asia/Oceania. The goal of ISER is to provide a forum for research in robotics that focuses on novelty of theoretical contributions validated by experimental results. The meetings are conceived to bring together, in a small group setting, researchers from around the world who are in the forefront of experimental robotics research. This unique reference presents the latest advances across the various fields of robotics, with ideas that are not only conceived conceptually but also explored experimentally. It collects robotics contributions on the current developments and new directions in the field of experimental robotics, which are based on the papers presented at the 14th ISER held on June 15-18, 2014 in Marrakech and Essaouira, Morocco. This present fourteenth edition of Experimental Robotics edited by M. Ani Hsieh, Oussama Khatib, and Vijay Kumar offers a collection of a broad range of topics in field and human-ce ntered robotics.
This book contains mainly the selected papers of the First International Workshop on Medical and Service Robots, held in Cluj-Napoca, Romania, in 2012. The high quality of the scientific contributions is the result of a rigorous selection and improvement based on the participants exchange of opinions and extensive peer-review. This process has led to the publishing of the present collection of 16 independent valuable contributions and points of view and not as standard symposium or conference proceedings. The addressed issues are: Computational Kinematics, Mechanism Design, Linkages and Manipulators, Mechanisms for Biomechanics, Mechanics of Robots, Control Issues for Mechanical Systems, Novel Designs, Teaching Methods, all of these being concentrated around robotic systems for medical and service applications. The results are of interest to researchers and professional practitioners as well as to Ph.D. students in the field of mechanical and electrical engineering. This volume marks the start of a subseries entitled New Trends in Medical and Service Robots within the "Machine and Mechanism Science Series," presenting recent trends, research results and new challenges in the field of medical and service robotics. "
This book introduces and illustrates modeling, sensing, and control methods for analyzing, designing, and developing spherical motors. It systematically presents models for establishing the relationships among the magnetic fields, position/orientation and force/torque, while also providing time-efficient solutions to assist researchers and engineers in studying and developing these motors. In order to take full advantage of spherical motors' compact structure in practical applications, sensing and control methods that utilize their magnetic fields and eliminate the need to install external sensors for feedback are proposed. Further, the book investigates for the first time spherical motors' force/torque manipulation capability, and proposes algorithms enabling the ball-joint-like end-effector for haptic use based on these motors' hybrid position/force actuation modes. While systematically presenting approaches to their design, sensing and control, the book also provides many examples illustrating the implementation issues readers may encounter.
This book provides a careful explanation of the basic areas of electronics and computer architecture, along with lots of examples, to demonstrate the interface, sensor design, programming and microcontroller peripheral setup necessary for embedded systems development. With no need for mechanical knowledge of robots, the book starts by demonstrating how to modify a simple radio-controlled car to create a basic robot. The fundamental electronics of the MSP430 are described, along with programming details in both C and assembly language, and full explanations of ports, timing, and data acquisition. Further chapters cover inexpensive ways to perform circuit simulation and prototyping. Key features include: Thorough treatment of the MSP430 s architecture and functionality along with detailed application-specific guidance Programming and the use of sensor technology to build an embedded system A learn-by-doing experience With this book you will learn: The basic theory for electronics design - Analog circuits - Digital logic - Computer arithmetic - Microcontroller programming How to design and build a working robotAssembly language and C
programming How to develop your own high-performance embedded
systems application using an on-going robotics application Teaches how to develop your own high-performance embedded systems application using an on-going robotics application Thorough treatment of the MSP430 s architecture and functionality along with detailed application-specific guidance. Focuses on electronics, programming and the use of sensor technology to build an embedded system Covers assembly language and C programming "
This book contains fifty-eight revised and extended research articles written by prominent researchers participating in the Advances in Engineering Technologies and Physical Science conference, held in London, U.K., 4-6 July, 2012. Topics covered include Applied and Engineering Mathematics, Computational Statistics, Mechanical Engineering, Bioengineering, Internet Engineering, Wireless Networks, Knowledge Engineering, Computational Intelligence, High Performance Computing, Manufacturing Engineering, and industrial applications. The book offers the state of art of tremendous advances in engineering technologies and physical science and applications, and also serves as an excellent reference work for researchers and graduate students working on engineering technologies and physical science and applications.
FSR, the International Conference on Field and Service Robotics, is the leading single track conference of robotics for field and service applications. This book presents the results of FSR2012, the eighth conference of Field and Service Robotics, which was originally planned for 2011 with the venue of Matsushima in Tohoku region of Japan. However, on March 11, 2011, a magnitude M9.0 earthquake occurred off the Pacific coast of Tohoku, and a large-scale disaster was caused by the Tsunami which resulted, therefore the conference was postponed by one year to July, 2012. In fact, this earthquake raised issues concerning the contribution of field and service robotics technology to emergency scenarios. A number of precious lessons were learned from operation of robots in the resulting, very real and challenging, disaster environments. Up-to-date study on disaster response, relief and recovery was then featured in the conference. This book offers 43 papers on a broad range of topics including: Disaster Response, Service/Entertainment Robots, Inspection/Maintenance Robots, Mobile Robot Navigation, Agricultural Robots, Robots for Excavation, Planetary Exploration, Large Area Mapping, SLAM for Outdoor Robots, and Elemental Technology for Mobile Robots.
Snake Robots is a novel treatment of theoretical and practical topics related to snake robots: robotic mechanisms designed to move like biological snakes and able to operate in challenging environments in which human presence is either undesirable or impossible. Future applications of such robots include search and rescue, inspection and maintenance, and subsea operations. Locomotion in unstructured environments is a focus for this book. The text targets the disparate muddle of approaches to modelling, development and control of snake robots in current literature, giving a unified presentation of recent research results on snake robot locomotion to increase the reader's basic understanding of these mechanisms and their motion dynamics and clarify the state of the art in the field. The book is a complete treatment of snake robotics, with topics ranging from mathematical modelling techniques, through mechatronic design and implementation, to control design strategies. The development of two snake robots is described and both are used to provide experimental validation of many of the theoretical results. Snake Robots is written in a clear and easily understandable manner which makes the material accessible by specialists in the field and non-experts alike. Numerous illustrative figures and images help readers to visualize the material. The book is particularly useful to new researchers taking on a topic related to snake robots because it provides an extensive overview of the snake robot literature and also represents a suitable starting point for research in this area.
This book focuses on advanced optical finishing techniques and design for high-performance manufacturing systems. It provides numerous detailed examples of how advanced automation techniques have been applied to optical fabrication processes. The simulations, removal rate and accurate experimental results offer useful resources for engineering practice. Researchers, engineers and graduate students working in optical engineering and precision manufacture engineering will benefit from this book.
Micro/Nano Robotics and Automation technologies have rapidly grown associated with the growth of Micro and Nanotechnologies. This book presents a summary of fundamentals in micro-nano scale engineering and the current state of the art of these technologies. "Micro-Nanorobotic Manipulation Systems and their Applications" introduces these advanced technologies from the basics and applications aspects of Micro/Nano-Robotics and Automation from the prospective micro/nano-scale manipulation. The book is organized in 9 chapters including an overview chapter of Micro/Nanorobotics and Automation technology from the historical view and important related research works. Further chapters are devoted to the physics of micro-nano fields as well as to material and science, microscopes, fabrication technology, importance of biological cell, and control techniques. Furthermore important examples, applications and a concise summary of Micro-Nanorobotics and Automation technologies are given.
Advances in research have led to the use of robotics in a range of
surgical applications. Medical robotics: Minimally invasive surgery
provides authoritative coverage of the core principles,
applications and future potential of this enabling technology.
This volume gathers the latest advances, innovations and applications in the field of cable robots, as presented by leading international researchers and engineers at the 4th International Conference on Cable-Driven Parallel Robots (CableCon 2019), held in Krakow, Poland on June 30-July 4, 2019, as part of the 5th IFToMM World Congress. It covers the theory and applications of cable-driven parallel robots, including their classification, kinematics and singularity analysis, workspace, statics and dynamics, cable modeling and technologies, control and calibration, design methodologies, hardware development, experimental evaluation and prototypes, as well as application reports and new application concepts. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.
Vision-based control of wheeled mobile robots is an interesting field of research from a scientific and even social point of view due to its potential applicability. This book presents a formal treatment of some aspects of control theory applied to the problem of vision-based pose regulation of wheeled mobile robots. In this problem, the robot has to reach a desired position and orientation, which are specified by a target image. It is faced in such a way that vision and control are unified to achieve stability of the closed loop, a large region of convergence, without local minima and good robustness against parametric uncertainty. Three different control schemes that rely on monocular vision as unique sensor are presented and evaluated experimentally. A common benefit of these approaches is that they are valid for imaging systems obeying approximately a central projection model, e.g., conventional cameras, catadioptric systems and some fisheye cameras. Thus, the presented control schemes are generic approaches. A minimum set of visual measurements, integrated in adequate task functions, are taken from a geometric constraint imposed between corresponding image features. Particularly, the epipolar geometry and the trifocal tensor are exploited since they can be used for generic scenes. A detailed experimental evaluation is presented for each control scheme.
This paper collection is the second volume of the LNMOB series on Road Vehicle Automation. The book contains a comprehensive review of current technical, socio-economic, and legal perspectives written by experts coming from public authorities, companies and universities in the U.S., Europe and Japan. It originates from the Automated Vehicle Symposium 2014, which was jointly organized by the Association for Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Burlingame, CA, in July 2014. The contributions discuss the challenges arising from the integration of highly automated and self-driving vehicles into the transportation system, with a focus on human factors and different deployment scenarios. This book is an indispensable source of information for academic researchers, industrial engineers, and policy makers interested in the topic of road vehicle automation.
This book contains the proceedings of the 11th FSR (Field and Service Robotics), which is the leading single-track conference on applications of robotics in challenging environments. This conference was held in Zurich, Switzerland from 12-15 September 2017. The book contains 45 full-length, peer-reviewed papers organized into a variety of topics: Control, Computer Vision, Inspection, Machine Learning, Mapping, Navigation and Planning, and Systems and Tools. The goal of the book and the conference is to report and encourage the development and experimental evaluation of field and service robots, and to generate a vibrant exchange and discussion in the community. Field robots are non-factory robots, typically mobile, that operate in complex and dynamic environments: on the ground (Earth or other planets), under the ground, underwater, in the air or in space. Service robots are those that work closely with humans to help them with their lives. The first FSR was held in Canberra, Australia, in 1997. Since that first meeting, FSR has been held roughly every two years, cycling through Asia, Americas, and Europe.
Session 1 includes 109 papers selected from 2011 3rd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2011), held on December 24-25, 2011, Shenzhen, China. This session will act as an international forum for researchers and practitioners interested in the advances in and applications of Intelligent Control Systems. It is an opportunity to present and observe the latest research, results, and ideas in these areas. Intelligent control is a rapidly developing, complex, and challenging field of increasing practical importance and still greater potential. Its applications have a solid core in robotics and mechatronics but branch out into areas as diverse as process control, automotive industry, medical equipment, renewable energy and air conditioning. So, this session will aim to strengthen relationships between industry, research laboratories and universities. All papers published in session 1 will be peer evaluated by at least two conference reviewers. Acceptance will be based primarily on originality and contribution.
Based on lecture notes on a space robotics course, this book offers a pedagogical introduction to the mechanics of space robots. After presenting an overview of the environments and conditions space robots have to work in, the author discusses a variety of manipulatory devices robots may use to perform their tasks. This is followed by a discussion of robot mobility in these environments and the various technical approaches. The last two chapters are dedicated to actuators, sensors and power systems used in space robots. This book fills a gap in the space technology literature and will be useful for students and for those who have an interest in the broad and highly interdisciplinary field of space robotics, and in particular in its mechanical aspects.
This book addresses two fundamental issues of motor control for both humans and robots: kinematic redundancy and the posture/movement problem. It blends traditional robotic constrained-optimal approaches with neuroscientific and evidence-based principles, proposing a "Task-space Separation Principle," a novel scheme for planning both posture and movement in redundant manipulators. The proposed framework is first tested in simulation and then compared with experimental motor strategies displayed by humans during redundant pointing tasks. The book also shows how this model builds on and expands traditional formulations such as the Passive Motion Paradigm and the Equilibrium Point Theory. Lastly, breaking with the neuroscientific tradition of planar movements and linear(ized) kinematics, the theoretical formulation and experimental scenarios are set in the nonlinear space of 3D rotations which are essential for wrist motions, a somewhat neglected area despite its importance in daily tasks.
The first volume of the Adaptive Environments series focuses on Robotic Building, which refers to both physically built robotic environments and robotically supported building processes. Physically built robotic environments consist of reconfigurable, adaptive systems incorporating sensor-actuator mechanisms that enable buildings to interact with their users and surroundings in real-time. These require Design-to-Production and Operation chains that are numerically controlled and (partially or completely) robotically driven. From architectured materials, on- and off-site robotic production to robotic building operation augmenting everyday life, the volume examines achievements of the last decades and outlines potential future developments in Robotic Building. This book offers an overview of the developments within robotics in architecture so far, and explains the future possibilities of this field. The study of interactions between human and non-human agents at building, design, production and operation level will interest readers seeking information on architecture, design-to-robotic-production and design-to-robotic-operation. The chapter "Robotic Building as Integration of Design-to-Robotic-Production and -Operation" of this book is available open access under a CC by 4.0  license at link.springer.com |
You may like...
Aggregation and Fusion of Imperfect…
Bernadette Bouchon-Meunier
Hardcover
R2,679
Discovery Miles 26 790
Decision Support for Construction Cost…
Chrispin Pettang, Marcelline Blanche Manjia, …
Hardcover
R4,189
Discovery Miles 41 890
Comprehensive Problem-Solving and Skill…
Ronald A. Styron Jr, Jennifer L. Styron
Hardcover
R5,205
Discovery Miles 52 050
|