![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > Robotics
This book provides an introduction to Swarm Robotics, which is the application of methods from swarm intelligence to robotics. It goes on to present methods that allow readers to understand how to design large-scale robot systems by going through many example scenarios on topics such as aggregation, coordinated motion (flocking), task allocation, self-assembly, collective construction, and environmental monitoring. The author explains the methodology behind building multiple, simple robots and how the complexity emerges from the multiple interactions between these robots such that they are able to solve difficult tasks. The book can be used as a short textbook for specialized courses or as an introduction to Swarm Robotics for graduate students, researchers, and professionals who want a concise introduction to the field.
Classical optimization methodologies fall short in very large and complex domains. In this book is suggested a different approach to optimization, an approach which is based on the 'blind' and heuristic mechanisms of evolution and population genetics. The genetic approach to optimization introduces a new philosophy to optimization in general, but particularly to engineering. By introducing the 'genetic' approach to robot trajectory generation, much can be learned about the adaptive mechanisms of evolution and how these mechanisms can solve real world problems. It is suggested further that optimization at large may benefit greatly from the adaptive optimization exhibited by natural systems when attempting to solve complex optimization problems, and that the determinism of classical optimization models may sometimes be an obstacle in nonlinear systems.This book is unique in that it reports in detail on an application of genetic algorithms to a real world problem, and explains the considerations taken during the development work. Futhermore, it addresses robotics in two new aspects: the optimization of the trajectory specification which has so far been done by human operators and has not received much attention for both automation and optimization, and the introduction of a heuristic strategy to a field predominated by deterministic strategies.
This book presents methodological and application research in detecting cellular and molecular biophysical properties based on atomic force microscopy (AFM) nanorobotics. Series methods for in situ label-free visualizing and quantifying the multiple physical properties of single cells and single molecules were developed, including immobilization strategies for observing fine structures of living cells, measurements of single-cell mechanics, force recognition of molecular interactions, and mapping protein organizations on cell surface. The biomedical applications of these methods in clinical lymphoma treatments were explored in detail, including primary sample preparation, cancer cell recognition, AFM detection and data analysis. Future directions about the biomedical applications of AFM are also given.
This book presents the cutting edge developments within a broad field related to robotic sailing. The contributions were presented during the 8th International Robotic Sailing Conference, which has taken place as a part of the 2015 World Robotic Sailing Championships in Mariehamn, Aland (Finland), August 31st - September 4th 2015. Since more than a decade, a series of competitions such as the World Robotic Sailing Championship have stimulated a variety of groups to work on research and development around autonomous sailing robots, which involves boat designers, naval architects, electrical engineers and computer scientists. While many of the challenges in building a truly autonomous sailboat are still unsolved, the books presents the state of the art of research and development within platform optimization, route and stability planning, collision avoidance, power management and boat control.
The International Workshop on Human-Friendly Robotics (HFR) is an annual meeting that brings together academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects related to the introduction of robots into everyday life. HFR collects contributions on current developments of a new generation of human-friendly robots, i.e., safe and dependable machines, operating in the close vicinity to humans or directly interacting with them in a wide range of domains. The papers contained in the book describe the newest and most original achievements in the field of human-robot-interaction coming from the work and ideas of young researchers. The contributions cover a wide range of topics related to human-robot interaction, both physical and cognitive, including theories, methodologies, technologies, empirical and experimental studies.
Efficient Dynamic Simulation of Robotic Mechanisms presents computationally efficient algorithms for the dynamic simulation of closed-chain robotic systems. In particular, the simulation of single closed chains and simple closed-chain mechanisms is investigated in detail. Single closed chains are common in many applications, including industrial assembly operations, hazardous remediation, and space exploration. Simple closed-chain mechanisms include such familiar configurations as multiple manipulators moving a common load, dexterous hands, and multi-legged vehicles. The efficient dynamics simulation of these systems is often required for testing an advanced control scheme prior to its implementation, to aid a human operator during remote teleoperation, or to improve system performance. In conjunction with the dynamic simulation algorithms, efficient algorithms are also derived for the computation of the joint space and operational space inertia matrices of a manipulator. The manipulator inertia matrix is a significant component of any robot dynamics formulation and plays an important role in both simulation and control. The efficient computation of the inertia matrix is highly desirable for real-time implementation of robot dynamics algorithms. Several alternate formulations are provided for each inertia matrix. Computational efficiency in the algorithm is achieved by several means, including the development of recursive formulations and the use of efficient spatial transformations and mathematics. All algorithms are derived and presented in a convenient tabular format using a modified form of spatial notation, a six-dimensional vector notation which greatly simplifies the presentation and analysis of multibody dynamics. Basic definitions and fundamental principles required to use and understand this notation are provided. The implementation of the efficient spatial transformations is also discussed in some detail. As a means of evaluating efficiency, the number of scalar operations (multiplications and additions) required for each algorithm is tabulated after its derivation. Specification of the computational complexity of each algorithm in this manner makes comparison with other algorithms both easy and convenient. The algorithms presented in Efficient Dynamic Simulation of Robotic Mechanisms are among the most efficient robot dynamics algorithms available at this time. In addition to computational efficiency, special emphasis is also placed on retaining as much physical insight as possible during algorithm derivation. The algorithms are easy to follow and understand, whether the reader is a robotics novice or a seasoned specialist.
Recently, research in robot kinematics has attracted researchers with different theoretical profiles and backgrounds, such as mechanical and electrica! engineering, computer science, and mathematics. It includes topics and problems that are typical for this area and cannot easily be met elsewhere. As a result, a specialised scientific community has developed concentrating its interest in a broad class of problems in this area and representing a conglomeration of disciplines including mechanics, theory of systems, algebra, and others. Usually, kinematics is referred to as the branch of mechanics which treats motion of a body without regard to the forces and moments that cause it. In robotics, kinematics studies the motion of robots for programming, control and design purposes. It deals with the spatial positions, orientations, velocities and accelerations of the robotic mechanisms and objects to be manipulated in a robot workspace. The objective is to find the most effective mathematical forms for mapping between various types of coordinate systems, methods to minimise the numerical complexity of algorithms for real-time control schemes, and to discover and visualise analytical tools for understanding and evaluation of motion properties ofvarious mechanisms used in a robotic system.
Signal Measurement and Estimation Techniques for Micro and
Nanotechnology discusses micro, nano and robotic cells and gives a
state-of-the-art presentation of the different techniques and
solutions to measure and estimate signals at the micro and nano
scale. New technologies and applications such as micromanipulation
(artificial components, biological objects), micro-assembly (MEMS,
MOEMS, NEMS) and material and surface force characterization are
covered. The importance of sensing at the micro and nano scale is
presented as a key issue in control systems, as well as for
understanding the physical phenomena of these systems. The book
also:
This book focuses on solving different types of time-varying problems. It presents various Zhang dynamics (ZD) models by defining various Zhang functions (ZFs) in real and complex domains. It then provides theoretical analyses of such ZD models and illustrates their results. It also uses simulations to substantiate their efficacy and show the feasibility of the presented ZD approach (i.e., different ZFs leading to different ZD models), which is further applied to the repetitive motion planning (RMP) of redundant robots, showing its application potential.
This monograph is framed within the context of off-road mobile robotics. In particular, it discusses issues related to modelling, localization, and motion control of tracked mobile robots working in planar slippery conditions. Tracked locomotion constitutes a well-known solution for mobile platforms operating over diverse challenging terrains, for that reason, tracked robotics constitutes an important research field with many applications (e.g. agriculture, mining, search and rescue operations, military activities). The specific topics of this monograph are: historical perspective of tracked vehicles and tracked robots; trajectory-tracking model taking into account slip effect; visual-odometry-based localization strategies; and advanced slip-compensation motion controllers ensuring efficient real-time execution. Physical experiments with a real tracked robot are presented showing the better performance of the suggested novel approaches to known techniques. Keywords: longitudinal slip, visual odometry, slip-compensation control, robust predictive control, trajectory tracking. Related subjects: Robotics Mechanical Engineering Mechanics Computer Science Artificial Intelligence - Applications "
Robot manipulation is a great challenge; it encompasses versatility -adaptation to different situations-, autonomy -independent robot operation-, and dependability -for success under modeling or sensing errors. A complete manipulation task involves, first, a suitable grasp or contact configuration, and the subsequent motion required by the task. This monograph presents a unified framework by introducing task-related aspects into the knowledge-based grasp concept, leading to task-oriented grasps. Similarly, grasp-related issues are also considered during the execution of a task, leading to grasp-oriented tasks which is called framework for physical interaction (FPI). The book presents the theoretical framework for the versatile specification of physical interaction tasks, as well as the problem of autonomous planning of these tasks. A further focus is on sensor-based dependable execution combining three different types of sensors: force, vision and tactile. The FPI approach allows to perform a wide range of robot manipulation tasks. All contributions are validated with several experiments using different real robots placed on household environments; for instance, a high-DoF humanoid robot can successfully operate unmodeled mechanisms with widely varying structure in a general way with natural motions. This research was recipient of the European Georges Giralt Award and the Robotdalen Scientific Award Honorary Mention.
This monograph by Florian Rohrbein, Germano Veiga and Ciro Natale is an edited collection of 15 authoritative contributions in the area of robot technology transfer between academia and industry. It comprises three parts on "Future Industrial Robotics," "Robotic Grasping" as well as "Human-Centered Robots." The book chapters cover almost all the topics nowadays considered hot within the robotics community, from reliable object recognition to dexterous grasping, from speech recognition to intuitive robot programming, from mobile robot navigation to aerial robotics, from safe physical human-robot interaction to body extenders. All contributions stem from the results of ECHORD the European Clearing House for Open Robotics Development, a large-scale integrating project funded by the European Commission within the 7th Framework Programme from 2009 to 2013. ECHORD s two main pillars were the so-called experiments, 51 small-sized industry-driven research projects and the structured dialog a powerful interaction instrument between the stakeholders. The results described in this volume are expected to shed new light on innovation and technology transfer from academia to industry in the field of robotics."
This book moves toward the realization of domestic robots by presenting an integrated view of computer vision and robotics, covering fundamental topics including optimal sensor design, visual servo-ing, 3D object modelling and recognition, and multi-cue tracking, emphasizing robustness throughout. Covering theory and implementation, experimental results and comprehensive multimedia support including video clips, VRML data, C++ code and lecture slides, this book is a practical reference for roboticists and a valuable teaching resource.
This monograph is a comprehensive introduction to the field of soccer robotics. Soccer robotics has become an important research area integrating mechatronics, computer science and artificial intelligence techniques to create real-world autonomous systems. It also serves as a popular test arena in which to compare the different approaches, in diverse types of competition and with varying levels of distributed perception and collaboration. The focus of this monograph is the FIRA framework of Soccer Robotics, in particular MiroSot, which uses a central overhead camera to overview the whole soccer field and a central control of the robots. "Soccer Robotics" completely describes the different requirements to create a soccer team and details the hardware aspects, the computer vision needed, navigation, action selection, basic skills and game strategy. These aspects are described at an undergraduate level, resulting in a book not only useful as a text for courses but also indispensable for everyone who wants to participate in MiroSot robotics.
The process control industry has seen generations of technology advancement, from pneumatic communication to electrical communication to electronic c- munication, from centralized control to distributed control. At the center of today's distributed control systems are operator workstations. These operator wo- stations provide the connection between those overseeing and running plant operations to the process itself. With each new generation of products the operator workstation has become increasingly more intelligent. Newer applications provide advanced alarming, control, and diagnostics. Behind all of these applications are smarter devices. These smart devices provide greater process insight, reduce en- neering costs, and contribute to improving the overall operational performance of the plant. Smart devices include advanced diagnostics that can report the health of the device and in many cases, the health of the process that the device is connected to. It is not uncommon for smart devices to include diagnostics that can detect plugged lines, burner flame instability, agitator loss, wet gas, orifice wear, leaks, and cavitations. These devices tell the user how well they are operating and when they need maintenance. Improvements in sensor technology and diagnostics have lead to a large variety of smart devices. So how do users connect the capabilities of these smart devices to their existing control system infrastructures? The answer is wireless. Wireless technology has matured to the point that it now can be safely applied in industrial control, monitor, and asset management applications.
As a stand-alone volume, Transistor Circuits For Spacecraft Power System presents numerous transistor circuits and building blocks associated with power electronics in general, and examines the major subsystem components for solar-based spacecraft power systems. The technique and concept, of "continuity of states" for nonlinear circuits handling power transfer under cyclic excitation is introduced in Part I and further developed throughout the book. This powerful technique employing matrix formulation bypasses eigen-transients and yields steady-state responses rapidly. Closed-loop treatments are also given for large-scale linear circuits, many closed-form solutions for control loop-gain, conducted susceptibility, output impedance, etc. are covered. Extensive mathematical procedures are retained to highlight the importance of analytical flows. The author also reviews the evolution of solar-based spacecraft power systems; introduces modes of operations: discharge (boost), shunt, and charge; and covers pulse-width-modulated (PWM) boost power converter for both DC and AC conditions. A configuration tree for shunt mode operation is conceived. Based on the configuration tree, the best topologies, sequential PWM shunt and ripple-regulated free-running shunt, are intensively examined and formulated. Transistor Circuits For Spacecraft Power System provides important information for understanding the relationship between earthbound semiconductor circuits and space borne vehicles.
This book is for researchers, engineers, and students who are willing to understand how humanoid robots move and be controlled. The book starts with an overview of the humanoid robotics research history and state of the art. Then it explains the required mathematics and physics such as kinematics of multi-body system, Zero-Moment Point (ZMP) and its relationship with body motion. Biped walking control is discussed in depth, since it is one of the main interests of humanoid robotics. Various topics of the whole body motion generation are also discussed. Finally multi-body dynamics is presented to simulate the complete dynamic behavior of a humanoid robot. Throughout the book, Matlab codes are shown to test the algorithms and to help the readers understanding.
Computational intelligence techniques are gaining momentum in the medical prognosis and diagnosis. This volume presents advanced applications of machine intelligence in medicine and bio-medical engineering. Applied methods include knowledge bases, expert systems, neural networks, neuro-fuzzy systems, evolvable systems, wavelet transforms, and specific internet applications. The volume is written in view of explaining to the practitioner the fundamental issues related to computational intelligence paradigms and to offer a fast and friendly-managed introduction to the most recent methods based on computer intelligence in medicine.
The microelectronics market, with special emphasis to the production of complex mixed-signal systems-on-chip (SoC), is driven by three main dynamics, time-- market, productivity and managing complexity. Pushed by the progress in na- meter technology, the design teams are facing a curve of complexity that grows exponentially, thereby slowing down the productivity design rate. Analog design automation tools are not developing at the same pace of technology, once custom design, characterized by decisions taken at each step of the analog design flow, - lies most of the time on designer knowledge and expertise. Actually, the use of - sign management platforms, like the Cadences Virtuoso platform, with a set of - tegrated CAD tools and database facilities to deal with the design transformations from the system level to the physical implementation, can significantly speed-up the design process and enhance the productivity of analog/mixed-signal integrated circuit (IC) design teams. These design management platforms are a valuable help in analog IC design but they are still far behind the development stage of design automation tools already available for digital design. Therefore, the development of new CAD tools and design methodologies for analog and mixed-signal ICs is ess- tial to increase the designer's productivity and reduce design productivitygap. The work presented in this book describes a new design automation approach to the problem of sizing analog ICs.
This monograph provides readers with tools for the analysis, and control of systems with fewer control inputs than degrees of freedom to be controlled, i.e., underactuated systems. The text deals with the consequences of a lack of a general theory that would allow methodical treatment of such systems and the ad hoc approach to control design that often results, imposing a level of organization whenever the latter is lacking. The authors take as their starting point the construction of a graphical characterization or control flow diagram reflecting the transmission of generalized forces through the degrees of freedom. Underactuated systems are classified according to the three main structures by which this is found to happen chain, tree, and isolated vertex and control design procedures proposed. The procedure is applied to several well-known examples of underactuated systems: acrobot; pendubot; Tora system; ball and beam; inertia wheel; and robotic arm with elastic joint. The text is illustrated with MATLAB(r)/Simulink(r) simulations that demonstrate the effectiveness of the methods detailed. Readers interested in aircraft, vehicle control or various forms of walking robot will be able to learn from "Underactuated Mechanical Systems" how to estimate the degree of complexity required in the control design of several classes of underactuated systems and proceed on to further generate more systematic control laws according to its methods of analysis."
Intelligent Mobile Robot Navigation builds upon the application of fuzzy logic to the area of intelligent control of mobile robots. Reactive, planned, and teleoperated techniques are considered, leading to the development of novel fuzzy control systems for perception and navigation of nonholonomic autonomous vehicles. The unique feature of this monograph lies in its comprehensive treatment of the problem, from the theoretical development of the various schemes down to the real-time implementation of algorithms on mobile robot prototypes. As such, the book spans different domains ranging from mobile robots to intelligent transportation systems, from automatic control to artificial intelligence.
This book reports on findings at the intersection between two related fields, namely coastal hydrography and marine robotics. On one side, it shows how the exploration of the ocean can be performed by autonomous underwater vehicles; on the other side, it shows how some methods from hydrography can be implemented in the localization and navigation of such vehicles, e.g. for target identification or path finding. Partially based on contributions presented at the conference Quantitative Monitoring of Underwater Environment, MOQESM, held on October 11-12, 2016, Brest, France, this book includes carefully revised and extended chapters presented at the conference, together with original papers not related to the event. All in all, it provides readers with a snapshot of current methods for sonar track registration, multi-vehicles control, collective exploration of underwater environments, optimization of propulsion systems, among others. More than that, the book is aimed as source of inspiration and tool to promote further discussions and collaboration between hydrographers, robotic specialists and other related communities.
The contributions in this book were presented at the sixth international symposium on Advances in Robot Kinematics organised in June/July 1998 in Strobl/Salzburg in Austria. The preceding symposia of the series took place in Ljubljana (1988), Linz (1990), Ferrara (1992), Ljubljana (1994), and Piran (1996). Ever since its first event, ARK has attracted the most outstanding authors in the area and managed to create a perfect combination of professionalism and friendly athmosphere. We are glad to observe that, in spite of a strong competition of many international conferences and meetings, ARK is continuing to grow in terms of the number of participants and in terms of its scientific impact. In its ten years, ARK has contributed to develop a remarkable scientific community in the area of robot kinematics. The last four symposia were organised under the patronage of the International Federation for the Theory of Machines and Mechanisms -IFToMM. interest to researchers, doctoral students and teachers, The book is of engineers and mathematicians specialising in kinematics of robots and mechanisms, mathematical modelling, simulation, design, and control of robots. It is divided into sections that were found as the prevalent areas of the contemporary kinematics research. As it can easily be noticed, an important part of the book is dedicated to various aspects of the kinematics of parallel mechanisms that persist to be one of the most attractive areas of research in robot kinematics. |
You may like...
Three-Dimensional Design Methodologies…
Vinod Pangracious, Zied Marrakchi, …
Hardcover
R2,685
Discovery Miles 26 850
Advances in Cognitive Informatics and…
Yingxu Wang, Du Zhang, …
Hardcover
R4,056
Discovery Miles 40 560
Guide to Computational Geometry…
J. Andreas Baerentzen, Jens Gravesen, …
Hardcover
R2,241
Discovery Miles 22 410
Genome Clustering - From Linguistic…
Alexander Bolshoy, Zeev Volkovich, …
Hardcover
R2,675
Discovery Miles 26 750
Advances in Production Management…
Bojan Lalic, Vidosav Majstorovic, …
Hardcover
R2,818
Discovery Miles 28 180
Soft Computing for Hybrid Intelligent…
Oscar Castillo, Patricia Melin, …
Hardcover
R4,083
Discovery Miles 40 830
Progress on Meshless Methods
Antonio J. M. Ferreira, E. J. Kansa, …
Hardcover
R4,046
Discovery Miles 40 460
|