Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > Robotics
This book deals with the growing challenges of using assistive robots in our everyday activities along with providing intelligent assistive services. The presented applications concern mainly healthcare and wellness such as helping elderly people, assisting dependent persons, habitat monitoring in smart environments, well-being, security, etc. These applications reveal also new challenges regarding control theory, mechanical design, mechatronics, portability, acceptability, scalability, security, etc.
This book establishes the foundations needed to realize the ultimate goals for artificial intelligence, such as autonomy and trustworthiness. Aimed at scientists, researchers, technologists, practitioners, and students, it brings together contributions offering the basics, the challenges and the state-of-the-art on trusted autonomous systems in a single volume. The book is structured in three parts, with chapters written by eminent researchers and outstanding practitioners and users in the field. The first part covers foundational artificial intelligence technologies, while the second part covers philosophical, practical and technological perspectives on trust. Lastly, the third part presents advanced topics necessary to create future trusted autonomous systems. The book augments theory with real-world applications including cyber security, defence and space.
Spiking neural networks (SNN) are biologically inspired computational models that represent and process information internally as trains of spikes. This monograph book presents the classical theory and applications of SNN, including original author's contribution to the area. The book introduces for the first time not only deep learning and deep knowledge representation in the human brain and in brain-inspired SNN, but takes that further to develop new types of AI systems, called in the book brain-inspired AI (BI-AI). BI-AI systems are illustrated on: cognitive brain data, including EEG, fMRI and DTI; audio-visual data; brain-computer interfaces; personalized modelling in bio-neuroinformatics; multisensory streaming data modelling in finance, environment and ecology; data compression; neuromorphic hardware implementation. Future directions, such as the integration of multiple modalities, such as quantum-, molecular- and brain information processing, is presented in the last chapter. The book is a research book for postgraduate students, researchers and practitioners across wider areas, including computer and information sciences, engineering, applied mathematics, bio- and neurosciences.
The first Workshop on Mechanisms, Transmissions and Applications -- MeTrApp-2011 was organized by the Mechatronics Department at the Mechanical Engineering Faculty, "Politehnica" University of Timisoara, Romania, under the patronage of the IFToMM Technical Committees Linkages and Mechanical Controls and Micromachines. The workshop brought together researchers and students who work in disciplines associated with mechanisms science and offered a great opportunity for scientists from all over the world to present their achievements, exchange innovative ideas and create solid international links, setting the trend for future developments in this important and creative field. The topics treated in this volume are mechanisms and machine design, mechanical transmissions, mechatronic and biomechanic applications, computational and experimental methods, history of mechanism and machine science and teaching methods.
This introduction to the field of hyper-heuristics presents the required foundations and tools and illustrates some of their applications. The authors organized the 13 chapters into three parts. The first, hyper-heuristic fundamentals and theory, provides an overview of selection constructive, selection perturbative, generation constructive and generation perturbative hyper-heuristics, and then a formal definition of hyper-heuristics. The chapters in the second part of the book examine applications of hyper-heuristics in vehicle routing, nurse rostering, packing and examination timetabling. The third part of the book presents advanced topics and then a summary of the field and future research directions. Finally the appendices offer details of the HyFlex framework and the EvoHyp toolkit, and then the definition, problem model and constraints for the most tested combinatorial optimization problems. The book will be of value to graduate students, researchers, and practitioners.
This book addresses optimization in robotics, in terms of both the configuration space and the metal structure of the robot arm itself; and discusses, describes and builds different types of heuristics and algorithms in MATLAB. In addition, the book includes a wealth of examples and exercises. In particular, it enables the reader to write a MATLAB code for all the related problems in robotics. The book also offers detailed descriptions of and builds from scratch several types of optimization algorithms using MATLAB and simplified methods, especially for inverse problems and avoiding singularities. Each chapter features examples and exercises to enhance the reader's comprehension. Accordingly, the book offers the reader a better understanding of robot analysis from an optimization standpoint.
ISRR, the "International Symposium on Robotics Research", is one of robotics pioneering Symposia, which has established over the past two decades some of the field's most fundamental and lasting contributions. This book presents the results of the seventeenth edition of "Robotics Research" ISRR15, offering a collection of a broad range of topics in robotics. The content of the contributions provides a wide coverage of the current state of robotics research.: the advances and challenges in its theoretical foundation and technology basis, and the developments in its traditional and new emerging areas of applications. The diversity, novelty, and span of the work unfolding in these areas reveal the field's increased maturity and expanded scope and define the state of the art of robotics and its future direction.
Robot intelligence has become a major focus of intelligent robotics. Recent innovation in computational intelligence including fuzzy learning, neural networks, evolutionary computation and classical Artificial Intelligence provides sufficient theoretical and experimental foundations for enabling robots to undertake a variety of tasks with reasonable performance. This book reflects the recent advances in the field from an advanced knowledge processing perspective; there have been attempts to solve knowledge based information explosion constraints by integrating computational intelligence in the robotics context.
The physical processes which initiate and maintain motion have been a major concern of serious investigation throughout the evolution of scientific thought. As early as the fifth century B. C. questions regarding motion were presented as touchstones for the most fundamental concepts about existence. Such wide ranging philosophical issues are beyond the scope of this book, however, consider the paradox of the flying arrow attri buted to Zeno of Elea: An arrow is shot from point A to point B requiring a sequence of time instants to traverse the distance. Now, for any time instant, T, of the sequence the arrow is at a position, Pi' and at Ti+! the i arrow is at Pi+i> with Pi ::I-P+* Clearly, each Ti must be a singular time i 1 unit at which the arrow is at rest at Pi because if the arrow were moving during Ti there would be a further sequence, Til' of time instants required for the arrow to traverse the smaller distance. Now, regardless of the level to which this recursive argument is applied, one is left with the flight of the arrow comprising a sequence of positions at which the arrow is at rest. The original intent of presenting this paradox has been interpreted to be as an argument against the possibility of individuated objects moving in space.
This is the first book to treat the analysis of 3D dynamic scenes using a stereovision system. Several approaches are described, for example two different methods for dealing with long and short sequences of images of an unknown environment including an arbitrary number of rigid mobile objects. Results obtained from stereovision systems are found to be superior to those from monocular image systems, which are often very sensitive to noise and therefore of little use in practice. It is shown thatmotion estimation can be further improved by the explicit modeling of uncertainty in geometric objects. The techniques developed in this book have been successfully demonstrated with a large number of real images in the context of visual navigation of a mobile robot.
"Proceedings of the 2013 Chinese Intelligent Automation
Conference" presents selected research papers from the CIAC 13,
held in Yangzhou, China. The topics include e.g. adaptive control,
fuzzy control, neural network based control, knowledge based
control, hybrid intelligent control, learning control, evolutionary
mechanism based control, multi-sensor integration, failure
diagnosis, and reconfigurable control. Engineers and researchers
from academia, industry, and government can gain an inside view of
new solutions combining ideas from multiple disciplines in the
field of intelligent automation.
In the past decade a critical mass of work that uses fuzzy logic for autonomous vehicle navigation has been reported. Unfortunately, reports of this work are scattered among conference, workshop, and journal publications that belong to different research communities (fuzzy logic, robotics, artificial intelligence, intelligent control) and it is therefore not easily accessible either to the new comer or to the specialist. As a result, researchers in this area may end up reinventing things while being unaware of important existing work. We believe that research and applications based on fuzzy logic in the field of autonomous vehicle navigation have now reached a sufficient level of maturity, and that it should be suitably reported to the largest possible group of interested practitioners, researches, and students. On these grounds, we have endeavored to collect some of the most representative pieces of work in one volume to be used as a reference. Our aim was to provide a volume which is more than "yet another random collection of papers," and gives the reader some added value with respect to the individual papers. In order to achieve this goal we have aimed at: * Selecting contributions which are representative of a wide range of prob lems and solutions and which have been validated on real robots; and * Setting the individual contributions in a clear framework, that identifies the main problems of autonomous robotics for which solutions based on fuzzy logic have been proposed.
Like the Internet before it, robotics is a socially and economically transformative technology. Robot Law explores how the increasing sophistication of robots and their widespread deployment into hospitals, public spaces, and battlefields requires rethinking of a wide variety of philosophical and public policy issues, including how this technology interacts with existing legal regimes, and thus may inspire changes in policy and in law. This volume collects the efforts of a diverse group of scholars who each, in their own way, has worked to overcome barriers in order to facilitate necessary and timely discussions of a technology in its infancy. Identifying controversial legal, ethical, and philosophical problems, the authors reveal how issues surrounding robotics and regulation are more complicated than engineers could have anticipated, and just how much definitional and applied work remains to be done. This groundbreaking examination of a brand-new reality will be of interest and of use to a variety of groups as the authors include engineers, ethicists, lawyers, roboticists, philosophers, and serving military. Contributors include: P. Asaro, C. Bassani, E. Calisgan, R. Calo, G. Conti, D.M. Cooper, G. Conti, E.A. Croft, K. Darling, F. Ferreira, A.M. Froomkin, S. Gutiu, W. Hartzog, F.P. Hubbard, C.E.A. Karnow, I. Kerr, D. Larkin, J. Millar, A. Moon, J. Nelson, F. Operto, N.M. Richards, L.A. Shay, W.D. Smart, B.W. Smith, K. Szilagyi, K. Thomasen, H.F.M. Van der Loos, G. Veruggio
Hopping, climbing and swimming robots, nano-size neural networks, motorless walkers, slime mould and chemical brains - "Artificial Life Models in Hardware" offers unique designs and prototypes of life-like creatures in conventional hardware and hybrid bio-silicon systems. Ideas and implementations of living phenomena in non-living substrates cast a colourful picture of state-of-art advances in hardware models of artificial life.
In recent yearswe haveseen considerableadvances in the development of - manoid robots, that is robots with an anthropomorphic design. Such robots should be capable of autonomously performing tasks for their human users in changing environments by adapting to these and to the circumstances at hand. To do so, they as well as any kind of autonomous robot need to have some way of understanding the world around them. We humans do so by our senses, both our far senses vision and hearing (smelling too) and our near senses touch and taste. Vision plays a special role in the way it simulta- ously tells us "where" and "what" in a direct way. It is therefore an accepted factthatto developautonomousrobots,humanoidornot,itisessentialto- clude competent systems for visual perception. Such systems should embody techniques from the ?eld of computer vision, in which sophisticated com- tational methods for extracting information from visual imagery have been developed over a number of decades. However, complete systems incorpor- ing such advanced techniques, while meeting the requirements of real-time processing and adaptivity to the complexity that even our everyday envir- ment displays, are scarce. The present volume takes an important step for ?lling this gap by presenting methods and a system for visual perception for a humanoid robot with speci?c applications to manipulation tasks and to how the robot can learn by imitating the human.
Rather than using traditional artificial intelligence techniques, which are ineffective when applied to the complexities of real-world robot navigaiton, Connell describes a methodology of reconstructing intelligent robots with distributed, multiagent control systems. After presenting this methodology, hte author describes a complex, robust, and successful application-a mobile robot "can collection machine" which operates in an unmodified offifce environment occupied by moving people.
Haptics technology is being used more and more in different applications, such as in computer games for increased immersion, in surgical simulators to create a realistic environment for training of surgeons, in surgical robotics due to safety issues and in mobile phones to provide feedback from user action. The existence of these applications highlights a clear need to understand performance metrics for haptic interfaces and their implications on device design, use and application. Performance Metrics for Haptic Interfaces aims at meeting this need by establishing standard practices for the evaluation of haptic interfaces and by identifying significant performance metrics. Towards this end, a combined physical and psychophysical experimental methodology is presented. Firstly, existing physical performance measures and device characterization techniques are investigated and described in an illustrative way. Secondly, a wide range of human psychophysical experiments are reviewed and the appropriate ones are applied to haptic interactions. The psychophysical experiments are unified as a systematic and complete evaluation method for haptic interfaces. Finally, synthesis of both evaluation methods is discussed. The metrics provided in this state-of-the-art volume will guide readers in evaluating the performance of any haptic interface. The generic methodology will enable researchers to experimentally assess the suitability of a haptic interface for a specific purpose, to characterize and compare devices quantitatively and to identify possible improvement strategies in the design of a system.
Intended for self-study, this second volume presents a systematic approach for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume. The focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, as well as active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of mechanical systems, i.e. robotics, mechatronics, vehicles, and machine tools. Its examples can be used as models for university lectures.
This thesis proposes an effective methodology for enhancing the perceptual capabilities and achieving interaction control of the iCub humanoid robot. The method is based on the integration of measurements from different sensors (force/torque, inertial and tactile sensors) distributed along the robot's kinematic chain. Humanoid robots require a substantial amount of sensor information to create their own representations of the surrounding environment. Tactile perception is of primary importance for the exploration process. Also in humans, the tactile system is completely functional at birth. In humanoid robotics, the measurements of forces and torques that the robot exchanges with its surroundings are essential for safe interaction with the environment and with humans. The approach proposed in this thesis can successfully enhance the perceptual capabilities of robots by exploiting only a limited number of both localized and distributed sensors, providing a feasible and convenient solution for achieving active compliance control of humanoid robots.
Since the late 1960s, there has been a revolution in robots and industrial automation, from the design of robots with no computing or sensorycapabilities (first-generation), to the design of robots with limited computational power and feedback capabilities (second-generation), and the design of intelligent robots (third-generation), which possess diverse sensing and decision making capabilities. The development of the theory of intelligent machines has been developed in parallel to the advances in robot design. This theory is the natural outcome of research and development in classical control (1950s), adaptive and learning control (1960s), self-organizing control (1970s) and intelligent control systems (1980s). The theory of intelligent machines involves utilization and integration of concepts and ideas from the diverse disciplines of science, engineering and mathematics, and fields like artificial intelligence, system theory and operations research. The main focus and motivation is to bridge the gap between diverse disciplines involved and bring under a common cover several generic methodologies pertaining to what has been defined as machine intelligence. Intelligent robotic systems are a specific application of intelligent machines. They are complex computer controlled robotic systems equipped with a diverse set of visual and non visual sensors and possess decision making and problem solving capabilities within their domain of operation. Their modeling and control is accomplished via analytical and heuristic methodologies and techniques pertaining to generalized system theory and artificial intelligence. Intelligent Robotic Systems: Theory, Design and Applications, presents and justifies the fundamental concepts and ideas associated with the modeling and analysis of intelligent robotic systems. Appropriate for researchers and engineers in the general area of robotics and automation, Intelligent Robotic Systems is both a solid reference as well as a text for a graduate level course in intelligent robotics/machines.
The development of self-operating machines is the foundation of
modern manufacturing. This current manufacturing environment is
based on automation and smart machines that have the ability to
make things with a level of accuracy and consistency that humans
cannot match. In order to maximize efficiency, engineers and
managers need to change their outlooks, processes and strategies
and as a result, adopt new methods and management systems.
This book highlights relevant studies and applications in the area of robotics, which reflect the latest research, from interdisciplinary theoretical studies and computational algorithm development, to representative applications. It presents chapters on advanced control, such as fuzzy, neural, backstepping, sliding mode, adaptive, predictive, diagnosis and fault tolerant control etc. and addresses topics including cloud robotics, cable-driven robots, two-wheeled robots, mobile robots, swarm robots, hybrid vehicle, and drones. Each chapter employs a uniform structure: background, motivation, quantitative development (equations), case studies/illustration/tutorial (simulations, experiences, curves, tables, etc.), allowing readers to easily tailor the techniques to their own applications.
Robotics is a modern interdisciplinary field that has emerged from the marriage of computerized numerical control and remote manipulation. Today's robotic systems have intelligence features, and are able to perform dexterous and intelligent human-like actions through appropriate combination of learning, perception, planning, decision making and control. This book presents advanced concepts, techniques and applications reflecting the experience of a wide group of specialists in the field. Topics include: kinematics, dynamics, path planning and tracking, control, mobile robotics, navigation, robot programming, and sophisticated applications in the manufacturing, medical, and other areas.
This book deals with the problems related to planning motion laws and t- jectories for the actuation system of automatic machines, in particular for those based on electric drives, and robots. The problem of planning suitable trajectories is relevant not only for the proper use of these machines, in order to avoid undesired e?ects such as vibrations or even damages on the mech- ical structure, but also in some phases of their design and in the choice and sizing of the actuators. This is particularly true now that the concept of "el- tronic cams" has replaced, in the design of automatic machines, the classical approach based on "mechanical cams." The choice of a particular trajectory has direct and relevant implications on several aspects of the design and use of an automatic machine, like the dimensioning of the actuators and of the reduction gears, the vibrations and e?orts generated on the machine and on the load, the tracking errors during the motion execution. For these reasons, in order to understand and appreciate the peculiarities of the di?erent techniques available for trajectory planning, besides the ma- ematical aspects of their implementation also a detailed analysis in the time and frequency domains, a comparison of their main properties under di?erent points of view, and general considerations related to their practical use are reported. |
You may like...
Handbook of Research on Innovation…
Gonçalo Poeta Fernandes, António Silva Melo
Hardcover
R7,692
Discovery Miles 76 920
Driving Innovation and Productivity…
Ardavan Amini, Stephen Bushell, …
Hardcover
R7,032
Discovery Miles 70 320
Design and Control Advances in Robotics
Mohamed Arezk Mellal
Hardcover
R7,967
Discovery Miles 79 670
AI 2041 - Ten Visions for Our Future
Kai-Fu Lee, Chen Qiufan
Paperback
Robotics Software Design and Engineering
Alejandro Rafael Garcia Ramirez, Augusto Loureiro da Costa
Hardcover
Hallo Robot - Meet Your New Workmate and…
Bennie Mols, Nieske Vergunst
Paperback
(1)
Automation and Control - Theories and…
Elmer P. Dadios
Hardcover
|