![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > Robotics
This volume constitutes the results of the International Conference on Underwater Environment, MOQESM'14, held at "Le Quartz" Conference Center in Brest, France, on October 14-15, 2014, within the framework of the 9th Sea Tech Week, International Marine Science and Technology Event. The objective of MOQESM'14 was to bring together researchers from both academia and industry, interested in marine robotics and hydrography with application to the coastal environment mapping and underwater infrastructures surveys. The common thread of the conference is the combination of technical control, perception, and localization, typically used in robotics, with the methods of mapping and bathymetry. The papers presented in this book focus on two main topics. Firstly, coastal and infrastructure mapping is addressed, focusing not only on hydrographic systems, but also on positioning systems, bathymetry, and remote sensing. The proposed methods rely on acoustic sensors such as side scan sonars, multibeam echo sounders, phase-measuring bathymetric sonars, as well as optical systems such as underwater laser scanners. Accurate underwater positioning is also addressed in the case of the use of a single acoustic beacon, and the latest advances in increasing the vertical precision of Global Navigation Satellite System (GNSS) are also presented. Most of the above mentioned works are closely related to autonomous marine vehicles. Consequently, the second part of the book describes some works concerning the methods associated with such type of vehicles. The selected papers focus on autonomous surface or underwater vehicles, detailing new approaches for localization, modeling, control, mapping, obstacle detection and avoidance, surfacing, and software development. Some of these works imply acoustics sensing as well as image processing. Set membership methods are also used in some papers. The applications of the work presented in this book concern in particular oceanography, monitoring of oil and gas infrastructures, and military field.
During the last years there has been an increasing interest in the area of service robots. Under this category we find robots working in tasks such as elderly care, guiding, office and domestic assistance, inspection, and many more. Service robots usually work in indoor environments designed for humans, with offices and houses being some of the most typical examples. These environments are typically divided into places with different functionalities like corridors, rooms or doorways. The ability to learn such semantic categories from sensor data enables a mobile robot to extend its representation of the environment, and to improve its capabilities. As an example, natural language terms like corridor or room can be used to indicate the position of the robot in a more intuitive way when communicating with humans. This book presents several approaches to enable a mobile robot to categorize places in indoor environments. The categories are indicated by terms which represent the different regions in these environments. The objective of this work is to enable mobile robots to perceive the spatial divisions in indoor environments in a similar way as people do. This is an interesting step forward to the problem of moving the perception of robots closer to the perception of humans. Many approaches introduced in this book come from the area of pattern recognition and classification. The applied methods have been adapted to solve the specific problem of place recognition. In this regard, this work is a useful reference to students and researchers who want to introduce classification techniques to help solve similar problems in mobile robotics.
This book comprises select proceedings of the international conference ETAEERE 2020. This volume covers latest research in advanced approaches in automation, control based devices, and adaptive learning mechanisms. The contents discuss the complex operations and behaviors of different systems or machines in different environments. Some of the areas covered include control of linear and nonlinear systems, intelligent systems, stochastic control, knowledge-based systems applications, fault diagnosis and tolerant control, and real-time control applications. The contents of this volume can be useful for researchers as well as professionals working in control and automation.
This book introduces intelligent manufacturing system planning, design, and implementation, through the deep integration of the Internet, big data, artificial intelligence, and manufacturing process, to promote the transformation and upgrading of enterprises. This book shows the implementation of intelligent manufacturing process with 12 benchmarking enterprises, discusses the planning, implementation, and control of intelligent manufacturing system technology and method of theory, and analyzes the five hierarchies of intelligent manufacturing system, the five stages of life cycle, and five kinds of intelligent depth. The content can cultivate the reader's vocational ability to develop intelligent solutions and implementation based on complex, uncertain environment needs. This book will be interesting and useful to a wide readership in the various fields of management, information science, and engineering science.
This book focuses on the principles and technology of environmental perception in unmanned systems. With the rapid development of a new generation of information technologies such as automatic control and information perception, a new generation of robots and unmanned systems will also take on new importance. This book first reviews the development of autonomous systems and subsequently introduces readers to the technical characteristics and main technologies of the sensor. Lastly, it addresses aspects including autonomous path planning, intelligent perception and autonomous control technology under uncertain conditions. For the first time, the book systematically introduces the core technology of autonomous system information perception.
This fascinating book examines some of the characteristics of
technological/engineering models that are likely to be unfamiliar
to those who are interested primarily in the history and philosophy
of science and mathematics, and which differentiate technological
models from scientific and mathematical ones. Themes that are
highlighted include:
This book examines the burgeoning revolution in the construction industry known as Construction 4.0, the attendant need for re-skilling human resources, and key stakeholders' roles in developing the required skills for Construction 4.0. It views the lack of 21st-century skills and skills gap in the industry as significant challenges limiting the uptake and implementation of Construction 4.0 technologies, especially in developing countries. In order to determine the skills required, this book examines the critical technologies of Construction 4.0, such as building information modelling (BIM), robotic construction, 3D printing and drones, which have transformed the construction industry, thereby creating digital, intelligent and sustainable construction solutions. Furthermore, the book considers the benefits, risks and relevant skills required to implement Construction 4.0 technologies.
The book presents an overview of current research on biologically inspired autonomous robotics from the perspective of some of the most relevant researchers in this area. The book crosses several boundaries in the field of robotics and the closely related field of artificial life. The key aim throughout the book is to obtain autonomy at different levels. From the basic motor behavior in some exotic robot architectures right through to the planning of complex behaviors or the evolution of robot control structures, the book explores different degrees and definitions of autonomous behavior. These behaviors are supported by a wide variety of modeling techniques: structural grammars, neural networks, and fuzzy logic and evolution underlies many of the development processes. Thus this text can be used by scientists and students interested in these areas and provides a general view of the field for a more general audience.
This book consolidates the current state of knowledge on implementing cooperating robot-based systems to increase the flexibility of manufacturing systems. It is based on the concrete experiences of experts, practitioners, and engineers in implementing cooperating robot systems for more flexible manufacturing systems. Thanks to the great variety of manufacturing systems that we had the opportunity to study, a remarkable collection of methods and tools has emerged. The aim of the book is to share this experience with academia and industry practitioners seeking to improve manufacturing practice. While there are various books on teaching principles for robotics, this book offers a unique opportunity to dive into the practical aspects of implementing complex real-world robotic applications. As it is used in this book, the term "cooperating robots" refers to robots that either cooperate with one another or with people. The book investigates various aspects of cooperation in the context of implementing flexible manufacturing systems. Accordingly, manufacturing systems are the main focus in the discussion on implementing such robotic systems. The book begins with a brief introduction to the concept of manufacturing systems, followed by a discussion of flexibility. Aspects of designing such systems, e.g. material flow, logistics, processing times, shop floor footprint, and design of flexible handling systems, are subsequently covered. In closing, the book addresses key issues in operating such systems, which concern e.g. decision-making, autonomy, cooperation, communication, task scheduling, motion generation, and distribution of control between different devices. Reviewing the state of the art and presenting the latest innovations, the book offers a valuable asset for a broad readership.
This book presents state-of-the-art research, challenges and solutions in the area of human-robot collaboration (HRC) in manufacturing. It enables readers to better understand the dynamic behaviour of manufacturing processes, and gives more insight into on-demand adaptive control techniques for industrial robots. With increasing complexity and dynamism in today's manufacturing practice, more precise, robust and practical approaches are needed to support real-time shop-floor operations. This book presents a collection of recent developments and innovations in this area, relying on a wide range of research efforts. The book is divided into five parts. The first part presents a broad-based review of the key areas of HRC, establishing a common ground of understanding in key aspects. Subsequent chapters focus on selected areas of HRC subject to intense recent interest. The second part discusses human safety within HRC. The third, fourth and fifth parts provide in-depth views of relevant methodologies and algorithms. Discussing dynamic planning and monitoring, adaptive control and multi-modal decision making, the latter parts facilitate a better understanding of HRC in real situations. The balance between scope and depth, and theory and applications, means this book appeals to a wide readership, including academic researchers, graduate students, practicing engineers, and those within a variety of roles in manufacturing sectors.
This book is a collection of high-quality research articles. The book includes topics specific to the emerging areas of control for robotic systems, wireless communication, and development of embedded systems for robotic applications. The book integrates three important aspects of automation, namely (i) communication, (ii) control, and (iii) embedded design for robotic applications. This book is unique as it provides a unified framework for analysis, design, and deployment of the robotic applications across various engineering and non-engineering disciplines including the three primary aspects mentioned above. Furthermore, the emerging research and development work pertaining to the deployment of intelligent, nonlinear, and embedded control for robotic system for non-standard operating environment due to the widespread application of robotics technology for societal benefit is also a focal point of the book.
This book provides readers with a 360-degree perspective on the Internet of Things (IoT) design and M2M communication process. It is intended to be used as a design guide for the development of IoT solutions, covering architecture, design, and development methods. This book examines applications such as industry automation for Industry 4.0, Internet of Medical Things (IoMT), and Internet of Services (IoS) as it is unfolding. Discussions on engineering fundamentals are limited to what is required for the realization of IoT solutions. Internet of Things and M2M Communication Technologies: Architecture and Practical Design Approach to IoT in Industry 4.0 is written by an industry veteran with more than 30 years of hands-on experience. It is an invaluable guide for electrical, electronic, computer science, and information science engineers who aspire to be IoT designers and an authoritative reference for practicing designers working on IoT device development. Provides complete design approach to develop IoT solutions; Includes reference designs and guidance on relevant standards compliance; Addresses design for manufacturability and business models.
This book presents theoretical modeling and numerical simulations applied to drive several applications towards Industrial Revolution 4.0 (IR 4.0). The topics discussed range from theoretical parts to extensive simulations involving many efficient algorithms as well as various statistical techniques. This book is suitable for postgraduate students, researchers as well as other scientists who are working in mathematics, statistics and numerical modeling and simulation.
This book gathers the latest advances, innovations, and applications in the field of machine science and mechanical engineering, as presented by international researchers and engineers at the 11th International Conference on Machine and Industrial Design in Mechanical Engineering (KOD), held in Novi Sad, Serbia on June 10-12, 2021. It covers topics such as mechanical and graphical engineering, industrial design and shaping, product development and management, complexity, and system design. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations.
This book describes the application of vision-sensing technologies in welding processes, one of the key technologies in intelligent welding manufacturing. Gas tungsten arc welding (GTAW) is one of the main welding techniques and has a wide range of applications in the manufacturing industry. As such, the book also explores the application of AI technologies, such as vision sensing and machine learning, in GTAW process sensing and feature extraction and monitoring, and presents the state-of-the-art in computer vision, image processing and machine learning to detect welding defects using non-destructive methods in order to improve welding productivity. Featuring the latest research from ORNL (Oak Ridge National Laboratory) using digital image correlation technology, this book will appeal to researchers, scientists and engineers in the field of advanced manufacturing.
This book provides a comprehensive review of fundamental issues in the dynamical modeling and vibration control design for several flexible mechanical systems, such as flexible satellites, flexible aerial refueling hoses, and flexible three-dimensional manipulators. Offering an authoritative reference guide to the dynamics and control of flexible mechanical systems, it equips readers to solve a host of problems concerning these systems. It provides not only a complete overview of flexible systems, but also a better understanding of the technical levels involved. The book is divided into ten chapters: Chapters 1 and 2 lay the foundations, while the remaining chapters explore several independent yet related topics in detail. The book's final chapter presents conclusions and recommendations for future research. Given its scope, the book is intended for researchers, graduate students, and engineers whose work involves control systems, flexible mechanical systems, and related areas.
This book covers three main types of agricultural systems: the use of robotics, drones (unmanned aerial vehicles), and satellite-guided precision farming methods. Some of these are well refined and are currently in use, while others are in need of refinement and are yet to become popular. The book provides a valuable source of information on this developing field for those involved with agriculture and farming and agricultural engineering. The book is also applicable as a textbook for students and a reference for faculty.
This book is the sixth volume of the successful book series on Robot Operating System: The Complete Reference. The objective of the book is to provide the reader with comprehensive coverage of the Robot Operating Systems (ROS) and the latest trends and contributed systems. ROS is currently considered as the primary development framework for robotics applications. There are seven chapters organized into three parts. Part I presents two chapters on the emerging ROS 2.0 framework; in particular, ROS 2.0 is become increasingly mature to be integrated into the industry. The first chapter from Amazon AWS deals with the challenges that ROS 2 developers will face as they transition their system to be commercial-grade. The second chapter deals with reactive programming for both ROS1 and ROS. In Part II, two chapters deal with advanced robotics, namely on the usage of robots in farms, and the second deals with platooning systems. Part III provides three chapters on ROS navigation. The first chapter deals with the use of deep learning for ROS navigation. The second chapter presents a detailed tuning guide on ROS navigation and the last chapter discusses SLAM for ROS applications. I believe that this book is a valuable companion for ROS users and developers to learn more ROS capabilities and features.
This book presents select proceedings of the International Conference on Recent Advances in Mechanical Engineering Research and Development (ICRAMERD 21). It covers the latest research trends in various branches of mechanical engineering. The topics covered include materials engineering, industrial system engineering, manufacturing systems engineering, automotive engineering, thermal systems, smart composite materials, manufacturing processes, industrial automation, and energy system. The book will be a valuable reference for beginners, researchers, engineers, and industry professionals working in the various fields of mechanical engineering.
This book gathers contributions by researchers from several countries on all major areas of robotic research, development and innovation, as well as new applications and current trends. The topics covered include: novel designs and applications of robotic systems, intelligent cooperating and service robots, advanced robot control, human-robot interfaces, robot vision systems, mobile robots, humanoid and walking robots, bio-inspired and swarm robotic systems, aerial, underwater and spatial robots, robots for ambient assisted living, medical robots and bionic prostheses, cognitive robots, cloud robotics, ethical and social issues in robotics, etc. Given its scope, the book offers a source of information and inspiration for researchers seeking to improve their work and gather new ideas for future developments. The contents reflect the outcomes of the activities of RAAD (International Conference on Robotics in Alpe-Adria-Danube Region) in 2020.
Automation and Robotics in the Architecture, Engineering, and Construction Industry provides distinct and unified insight into current and future construction robotics, offering readers a comprehensive perspective for constructing a road map and illuminating improvements for a successful transition towards construction robotization. The book covers the fundamentals and applications of robotics, autonomous vehicles, and human-perceptive machines at construction sites. Through theoretical and experimental analyses, it examines the potential of robotics and automated systems for current and future fieldwork operations and identifies the factors that determine their implementation pace, adoption scale, and ubiquity throughout the industry. The book evaluates the technical, societal, and economic aspects of adopting robots in construction, both as standalone and collaborative systems, which in return can afford the opportunity to investigate these AI-enabled machines more systematically.
This volume gathers the latest advances, innovations, and applications in the field of geographic information systems and unmanned aerial vehicle (UAV) technologies, as presented by leading researchers and engineers at the 1st International Conference on Unmanned Aerial System in Geomatics (UASG), held in Roorkee, India on April 6-7, 2019. It covers highly diverse topics, including photogrammetry and remote sensing, surveying, UAV manufacturing, geospatial data sensing, UAV processing, visualization, and management, UAV applications and regulations, geo-informatics and geomatics. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different specialists.
This book looks at the common problems both human and robotic hands encounter when controlling the large number of joints, actuators and sensors required to efficiently perform motor tasks such as object exploration, manipulation and grasping. The authors adopt an integrated approach to explore the control of the hand based on sensorimotor synergies that can be applied in both neuroscience and robotics. Hand synergies are based on goal-directed, combined muscle and kinematic activation leading to a reduction of the dimensionality of the motor and sensory space, presenting a highly effective solution for the fast and simplified design of artificial systems. Presented in two parts, the first part, Neuroscience, provides the theoretical and experimental foundations to describe the synergistic organization of the human hand. The second part, Robotics, Models and Sensing Tools, exploits the framework of hand synergies to better control and design robotic hands and haptic/sensing systems/tools, using a reduced number of control inputs/sensors, with the goal of pushing their effectiveness close to the natural one. Human and Robot Hands provides a valuable reference for students, researchers and designers who are interested in the study and design of the artificial hand.
The book discusses the opportunities and challenges of managing knowledge in the new reality of Industry 4.0. Addressing paradigmatic changes in value creation due to the development of digital technologies applied to manufacturing (additive manufacturing, IoT, robotics, etc.), it includes theoretical and empirical contributions on how Industry 4.0 technologies allow firms to create and exploit knowledge. The carefully selected expert contributions highlight the potential of these technologies in acquiring knowledge from a larger number of sources and examine approaches to innovation, organization of activities, and stakeholder development in the context of this next industrial revolution.
This book comprises select proceedings of the International Conference on Emerging Trends for Smart Grid Automation and Industry 4.0 (ICETSGAI4.0 2019). The contents discuss the recent trends in smart grid technology and related applications. The topics covered include data analytics for smart grid operation and control, integrated power generation technologies, green technologies as well as advances in microgrid operation and planning. The book highlights the enhancement in technology in the field of smart grids, and how IoT, big data, robotics and automation, artificial intelligence, and wide area measurement have become prerequisites for the fourth industrial revolution, also known as Industry 4.0. The book can be a valuable reference for researchers and professionals interested in smart grid automation incorporating features of Industry 4.0. |
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
Indentured - Behind The Scenes At Gupta…
Rajesh Sundaram
Paperback
(2)
Dare to Be More - The Witness of Blessed…
Colleen Swaim, Matt Swaim
Paperback
Jacob Boehme - His Life and Teaching. Or…
H. (Hans) 1808-1884 Martensen
Hardcover
R919
Discovery Miles 9 190
|