![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > Robotics
This book presents biologically inspired walking machines interacting with their physical environment, and shows how the morphology and behavior control of machines can benefit from biological studies. The purpose is to develop a modular structure of neural control generating reactive behaviors of the physical walking machines, to analyze the neural mechanisms underlying them, and to demonstrate the sensor fusion technique leading to smooth switching between appropriate behaviors, like obstacle avoidance and sound tropism.
Introducing mobile humanoid robots into human environments requires the systems to physically interact and execute multiple concurrent tasks. The monograph at hand presents a whole-body torque controller for dexterous and safe robotic manipulation. This control approach enables a mobile humanoid robot to simultaneously meet several control objectives with different pre-defined levels of priority, while providing the skills for compliant physical contacts with humans and the environment. After a general introduction into the topic of whole-body control, several essential reactive tasks are developed to extend the repertoire of robotic control objectives. Additionally, the classical Cartesian impedance is extended to the case of mobile robots. All of these tasks are then combined and integrated into an overall, priority-based control law. Besides the experimental validation of the approach, the formal proof of asymptotic stability for this hierarchical controller is presented. By interconnecting the whole-body controller with an artificial intelligence, the immense potential of the integrated approach for complex real-world applications is shown. Several typical household chores, such as autonomously wiping a window or sweeping the floor with a broom, are successfully performed on the mobile humanoid robot Rollin' Justin of the German Aerospace Center (DLR). The results suggest the presented controller for a large variety of fields of application such as service robotics, human-robot cooperation in industry, telepresence in medical applications, space robotics scenarios, and the operation of mobile robots in dangerous and hazardous environments.
Considerable amount of effort has been devoted, over the recent years, towards the development of electronic skin (e-skin) for many application domains such as prosthetics, robotics, and industrial automation. Electronic Skin: Sensors and Systems focuses on the main components constituting the e-skin system. The e-skin system is based on: i) sensing materials composing the tactile sensor array, ii) the front end electronics for data acquisition and signal conditioning, iii) the embedded processing unit performing tactile data decoding, and iv) the communication interface in charge of transmitting the sensors data for further computing. Technical topics discussed in the book include: * Tactile sensing material; * Electronic Skin systems; * Embedded computing and tactile data decoding; * Communication systems for tactile data transmission; * Relevant applications of e-skin system; The book takes into account not only sensing materials but it also provides a thorough assessment of the current state of the art at system level. The book addresses embedded electronics and tactile data processing and decoding, techniques for low power embedded computing, and the communication interface. Electronic Skin: Sensors and Systems is ideal for researchers, Ph.D. students, academic staff and Masters/research students in sensors/sensing systems, embedded systems, data processing and decoding, and communication systems.
First book to look at legal and regulatory aspects of personal care robots
This book offers the latest research advances in the field of Industry 4.0, focusing on enabling technologies for its deployment in a comprehensive way. This book offers successful implementation of technologies such as artificial intelligence, augmented and virtual reality, autonomous and collaborative robots, cloud computing, and up-to-date guidelines. It investigates how the technologies and principles surrounding Industry 4.0 (e.g., interoperability, decentralized decisions, information transparency, etc.) serve as support for organizational routines and workers (and vice versa). Included are applications of technologies for different sectors and environments as well as for the supply chain management. It also offers a domestic and international mix of case studies that spotlight successes and failures. Features Provides a historical review of Industry 4.0 and its roots Discusses the applications of technologies in different sectors and environments (e.g., public vs. private) Presents key enabling technologies for successful implementation in any industrial and service environment Offers case studies of successes and failures to illustrate how to put theory into practice Investigates how technologies serve as support for organizational routines and workers
Provides a comprehensive introduction to multi-robot systems planning and task allocation; Explores multi robot aerial planning, flight planning, orienteering and coverage, and deployment, patrolling, and foraging; Includes real-world case studies; Treats different aspects of cooperation in multi-agent systems.
Covers deep learning fundamentals; Focuses on applications; Covers human emotion analysis and deep learning; Explains how to use web based techniques for deep learning applications; Includes coverage of autonomous vehicles and deep learning
1) Provides a visual approach to the subject of robotics, aiding students and professionals in understanding the topic 2) Demonstrates how to solve problems using simple code, making it accessible to those with limited coding experience 3) Uses real world examples in order to demonstrate concepts in a practical manner 4) Provides a complete set of examples for typical robot manipulator architectures, including Puma, Bending-Backwards, Gantry, Scara, Collaborative and Redundant 5) Uses 6D vectors in order to reduce the computational volume of implementations
This proceedings presents the papers of the 3rd EAI International Conference on Robotic Sensor Networks (ROSENET 2019). The conference explores the integration of networks and robotic technologies, which has become a topic of increasing interest for both researchers and developers from academic fields and industries worldwide. The authors posit that big networks will be the main approach to the next generation of robotic research, The book discusses how the explosive number of network models and increasing computational power of computers significantly extends the number of potential applications for robotic technologies while also bringing new challenges to each network's community. The conference provided a platform for researchers to share up-to-date scientific achievements in this field. The conference took place August 17, 2019, Kitakyushu, Japan. Presents the proceedings of the 3rd EAI International Conference on Robotic Sensor Networks (ROSENET 2019), August 17, 2019, Kitakyushu, Japan Features papers on robotic technologies for healthcare, medicine, military and more Includes perspectives from a multi-disciplinary selection of global researchers, academics, and professionals
Some twenty years have elapsed since the first attempts at planning were made by researchers in artificial intelligence. These early programs concentrated on the development of plans for the solution of puzzles or toy problems, like the rearrangement of stacks of blocks. These early programs provided the foundation for the work described in this book, the automatic generation of plans for industrial assembly. As one reads about the complex and sophisticated planners in the current gen eration, it is important to keep in mind that they are addressing real-world problems. Although these systems may become the "toy" systems of tomor row, they are providing a solid foundation for future, more general and more advanced planning tools. As demonstrated by the papers in this book, the field of computer-aided mechanical assembly planning is maturing. It now may include: * geometric descriptions of parts extracted from or compatible with CAD programs; * constraints related to part interference and the use of tools; * fixtures and jigs required for the assembly; * the nature of connectors, matings and other relations between parts; * number of turnovers required during the assembly; * handling and gripping requirements for various parts; * automatic identification of subassemblies. This is not an exhaustive list, but it serves to illustrate the complexity of some of the issues which are discussed in this book. Such issues must be considered in the design of the modern planners, as they produce desirable assembly sequences and precedence relations for assembly.
An all-in-one resource for designing and implementing embedded control in mobile robotics In Embedded Control for Mobile Robotic Applications, a distinguished trio of researchers delivers an authoritative and fulsome resource for understanding embedded control and robotics. The book includes coverage of a variety of embedded platforms, their use in controller implementation, stability analyses of designed controllers, and two new approaches for designing embedded controllers. The authors offer a full chapter on Field-Programmable-Gate-Array (FPGA) architecture development for controller design that is perfect for both practitioners and students taking robotics courses and provide a companion website that includes MATLAB codes for simulation and embedded platform-specific code for mobile robotic applications (in Embedded C and Verilog). The two approaches discussed by the authors--the top-down methodology and the bottom-up methodology--are of immediate practical utility to both practicing professionals in the field and students studying control applications and mobile robotics. The book also offers: A thorough introduction to embedded control, including processor, IC, and design technology, as well as a discussion of limitations in embedded control design Comprehensive explorations of the bottom-up and top-down methods, including computations using CORDIC, interval arithmetic, sliding surface design, and switched nonlinear systems Practical discussions of generic FPGA architecture design, including Verilog, PID controllers, DC motors and Encoder, and a systematic approach for designing architecture using FSMD In-depth examinations of discrete-time controller design, including the approximation to discrete-time transfer function and embedded implementation stability Perfect for practitioners working in embedded control design and control applications in robotics, Embedded Control for Mobile Robotic Applications will also earn a place in the libraries of academicians, researchers, senior undergraduate students, and graduate students in these fields.
The new frontiers of robotics research foresee future scenarios where artificial agents will leave the laboratory to progressively take part in the activities of our daily life. This will require robots to have very sophisticated perceptual and action skills in many intelligence-demanding applications, with particular reference to the ability to seamlessly interact with humans. It will be crucial for the next generation of robots to understand their human partners and at the same time to be intuitively understood by them. In this context, a deep understanding of human motion is essential for robotics applications, where the ability to detect, represent and recognize human dynamics and the capability for generating appropriate movements in response sets the scene for higher-level tasks. This book provides a comprehensive overview of this challenging research field, closing the loop between perception and action, and between human-studies and robotics. The book is organized in three main parts. The first part focuses on human motion perception, with contributions analyzing the neural substrates of human action understanding, how perception is influenced by motor control, and how it develops over time and is exploited in social contexts. The second part considers motion perception from the computational perspective, providing perspectives on cutting-edge solutions available from the Computer Vision and Machine Learning research fields, addressing higher-level perceptual tasks. Finally, the third part takes into account the implications for robotics, with chapters on how motor control is achieved in the latest generation of artificial agents and how such technologies have been exploited to favor human-robot interaction. This book considers the complete human-robot cycle, from an examination of how humans perceive motion and act in the world, to models for motion perception and control in artificial agents. In this respect, the book will provide insights into the perception and action loop in humans and machines, joining together aspects that are often addressed in independent investigations. As a consequence, this book positions itself in a field at the intersection of such different disciplines as Robotics, Neuroscience, Cognitive Science, Psychology, Computer Vision, and Machine Learning. By bridging these different research domains, the book offers a common reference point for researchers interested in human motion for different applications and from different standpoints, spanning Neuroscience, Human Motor Control, Robotics, Human-Robot Interaction, Computer Vision and Machine Learning. Chapter 'The Importance of the Affective Component of Movement in Action Understanding' of this book is available open access under a CC BY 4.0 license at link.springer.com.
This volume brings together academics from evolutionary biology, literary theory, robotics, digital culture, anthropology, sociology, and environmental studies to consider the impact of robotics and AI on society. By bringing these perspectives together in one book, readers gain a sense of the complex scientific, social, and ideological contexts within which AI and robotics research is unfolding, as well as the illusory suppositions and distorted claims being mobilized by the industry in the name of bettering humanity's future. Discussions about AI and robotics have been shaped by computer science and engineering, steered by corporate and military interests, forged by transhumanist philosophy and libertarian politics, animated by fiction, and hyped by the media. From fiction passing as science to the illusion of AI autonomy to the business of ethics to the automation of war, this collection recognizes the inevitable entanglement of humanity and technology, while exposing the problematic assumptions and myths driving the field in order to better assess its risks and potential.
The 2008 TUB-SJTU joint workshop on Autonomous Systems Self-Organization, Management, and Control was held on October 6, 2008 at Shanghai Jiao Tong University, Shanghai, China. The workshop, sponsored by Shanghai Jiao Tong University and Technical University of Berlin brought together scientists and researchers from both universities to present and discuss the latest progress on autonomous systems and its applications in diverse areas. Autonomous systems are designed to integrate machines, computing, sensing, and software to create intelligent systems capable of interacting with the complexities of the real world. Autonomous systems represent the physical embodiment of machine intelligence. Topics of interest include, but are not limited to theory and modeling for autonomous systems; organization of autonomous systems; learning and perception; complex systems; multi-agent systems; robotics and control; applications of autonomous systems.
This book introduces readers to the shell structure, operating principle, manufacturing process, and control theory for cylindrical vibratory gyroscopes. The cylindrical vibratory gyroscope is an important type of Coriolis vibratory gyroscope that holds considerable potential for development and application. The main aspects addressed include: operating principle and structure, theoretical analysis and modeling, dynamic analysis and modeling, manufacturing process, parameter testing methods, closed-loop control, and the error compensation mechanism in cylindrical vibratory gyroscopes.
This book gathers the latest advances, innovations and applications in the field of robotics and mechatronics, as presented by leading international researchers and engineers at the 6th IFToMM International Symposium on Robotics and Mechatronics (ISRM), held in Taipei, Taiwan, on October 28-30, 2019. It covers highly diverse topics, including mechanism synthesis, analysis, and design, kinematics and dynamics of multibody systems, modelling and simulation, sensors and actuators, novel robotic systems, industrial- and service-related robotics and mechatronics, medical robotics, and historical developments in robotics and mechatronics. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that spur novel research directions and foster new, multidisciplinary collaborations.
Robotic Process Automation will continue its exponential growth over the next five years. With more than 54 vendors, different kinds of tools, generic applicability and as a cognitive and AI platform, RPA has fast become an opportunity that is too good to miss. So, how do you leverage the massive potential business value? Based on four years of research into over 420 business deployments, this book identifies the distinctive leading practices of front-runners, and a Total Value of Ownership (TVO) framework to drive out value across the RPA life-cycle. This book brings a new focus on RPA's strategic potential: the innovations made possible and how to deliver through effective sourcing stakeholder-buy-in, governance, change management, and capability development practices. RPA as a platform, linking with cognitive and AI technologies as part of digital transformation is highlighted. The central messages - think and behave strategically, start right, institutionalize fast, and innovate continuously - are demonstrated, with multiple client experiences, trials and lessons. From dealing with old world process and IT challenges, RPA is now being applied towards building the new digital world and becoming strategic in its application. * Based on extensive new research by world renowned authors * Comprehensive market overview * A systematic set of action principles across the RPA life-cycle * Challenges, and where value is being left on the table * A focus on metrics and Total Value of Ownership * Multiple client case studies * RPA as a foundation for cognitive and AI
This book provides detailed fundamental theoretical reviews and preparations necessary for developing advanced dynamics modeling and control strategies for various types of robotic systems. This research book specifically addresses and discusses the uniqueness issue of representing orientation or rotation, and further proposes an innovative isometric embedding approach. The novel approach can not only reduce the dynamic formulation for robotic systems into a compact form, but it also offers a new way to realize the orientational trajectory-tracking control procedures. In addition, the book gives a comprehensive introduction to fundamentals of mathematics and physics that are required for modeling robot dynamics and developing effective control algorithms. Many computer simulations and realistic 3D animations to verify the new theories and algorithms are included in the book as well. It also presents and discusses the principle of duality involved in robot kinematics, statics, and dynamics. The duality principle can guide the dynamics modeling and analysis into a right direction for a variety of robotic systems in different types from open serial-chain to closed parallel-chain mechanisms. It intends to serve as a diversified research reference to a wide range of audience, including undergraduate juniors and seniors, graduate students, researchers, and engineers interested in the areas of robotics, control and applications.
The trend in the evolution of robotic systems is that the number of degrees of freedom increases. This is visible both in robot manipulator design and in the shift of focus from single to multi-robot systems. Following the principles of evolution in nature, one may infer that adding degrees of freedom to robot systems design is beneficial. However, since nature did not select snake-like bodies for all creatures, it is reasonable to expect the presence of a certain selection pressure on the number of degrees of freedom. Thus, understanding costs and benefits of multiple degrees of freedom, especially those that create redundancy, is a fundamental problem in the field of robotics. This volume is mostly based on the works presented at the workshop on Redundancy in Robot Manipulators and Multi-Robot Systems at the IEEE/RSJ International Conference on Intelligent Robots and Systems - IROS 2011. The workshop was envisioned as a dialog between researchers from two separate, but obviously related fields of robotics: one that deals with systems having multiple degrees of freedom, including redundant robot manipulators, and the other that deals with multirobot systems. The volume consists of twelve chapters, each representing one of the two fields.
AI for Digital Warfare explores how the weaponising of artificial intelligence can and will change how warfare is being conducted, and what impact it will have on the corporate world. With artificial intelligence tools becoming increasingly advanced, and in many cases more humanlike, their potential in psychological warfare is being recognised, which means digital warfare can move beyond just shutting down IT systems into more all-encompassing hybrid war strategies.
This unique monograph focuses on the systematic type synthesis of parallel mechanisms (PMs), a key issue in the creative design of a wide variety of innovative devices such as parallel manipulators, motion simulators, and haptic devices. Essential reading for researchers, developers, engineers and graduate students with interests in robotics, this book covers the classification of PMs as well as providing a large number of PMs ready to be used in practical applications.
"Proceedings of the 2013 Chinese Intelligent Automation
Conference" presents selected research papers from the CIAC 13,
held in Yangzhou, China. The topics include e.g. adaptive control,
fuzzy control, neural network based control, knowledge based
control, hybrid intelligent control, learning control, evolutionary
mechanism based control, multi-sensor integration, failure
diagnosis, and reconfigurable control. Engineers and researchers
from academia, industry, and government can gain an inside view of
new solutions combining ideas from multiple disciplines in the
field of intelligent automation.
a short and accessible introduction on AI and Cars written by leading experts |
You may like...
Management and Applications of Complex…
G. Rzevski, S. Syngellakis
Hardcover
R2,290
Discovery Miles 22 900
Computational Optimization Techniques…
Muhammad Sarfraz, Samsul Ariffin Abdul Karim
Hardcover
R3,099
Discovery Miles 30 990
Robust Optimization of Spline Models and…
Ayse OEzmen
Hardcover
Nature-inspired Methods for Stochastic…
Javier Del Ser, Eneko Osaba
Hardcover
R2,550
Discovery Miles 25 500
Modern Maximum Power Point Tracking…
Ali M. Eltamaly, Almoataz Y. Abdelaziz
Hardcover
R2,734
Discovery Miles 27 340
|