![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > Robotics
Robots and artificial intelligence (AI) are powerful forces that will likely have large impacts on the size, direction, and composition of international trade flows. This book discusses how industrial robots, automation, and AI affect international growth, trade, productivity, employment, wages, and welfare. The book explains new approaches on how robots and artificial intelligence affect the world economy by presenting detailed theoretical framework and country-specific as well as firm-product level-specific exercises. This book will be a useful reference for those researching on robots, automation, AI and their economic impacts on trade, industry, and employment. The Open Access version of this book, available at www.taylorfrancis.com, has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.
Visual Perception and Control of Underwater Robots covers theories and applications from aquatic visual perception and underwater robotics. Within the framework of visual perception for underwater operations, image restoration, binocular measurement, and object detection are addressed. More specifically, the book includes adversarial critic learning for visual restoration, NSGA-II-based calibration for binocular measurement, prior knowledge refinement for object detection, analysis of temporal detection performance, as well as the effect of the aquatic data domain on object detection. With the aid of visual perception technologies, two up-to-date underwater robot systems are demonstrated. The first system focuses on underwater robotic operation for the task of object collection in the sea. The second is an untethered biomimetic robotic fish with a camera stabilizer, its control methods based on visual tracking. The authors provide a self-contained and comprehensive guide to understand underwater visual perception and control. Bridging the gap between theory and practice in underwater vision, the book features implementable algorithms, numerical examples, and tests, where codes are publicly available. Additionally, the mainstream technologies covered in the book include deep learning, adversarial learning, evolutionary computation, robust control, and underwater bionics. Researchers, senior undergraduate and graduate students, and engineers dealing with underwater visual perception and control will benefit from this work.
It is widely anticipated that autonomous vehicles will have a transformational impact on military forces and will play a key role in many future force structures. As a result, many tasks have already been identified that unmanned systems could undertake more readily than humans. However, for this to occur, such systems will need to be agile, versatile, persistent, reliable, survivable and lethal. This will require many of the vehicles 'cognitive' or higher order functions to be more fully developed, whereas to date only the 'component' or physical functions have been successfully automated and deployed. The book draws upon a broad range of others' work with a view to providing a product that is greater than the sum of its parts. The discussion is intentionally approached from the perspective of improving understanding rather than providing solutions or drawing firm conclusions. Consequently, researchers reading this book with the hope of uncovering some novel theory or approach to automating an unmanned vehicle will be as disappointed as the capability planner who anticipates a catalogue of technical risks and feasibility options against his favoured list of component technologies and potential applications. Nevertheless, it is hoped that both will at least learn something of the other's world and that progress will ensue as a result. For the defence policy and decision maker, this is a "must-read"
book which brings together an important technology summary with a
considered analysis of future doctrinal, legal and ethical issues
in unmanned and autonomous systems. For research engineers and
developers of robotics, this book provides a unique perspective on
the implications and consequences of our craft; connecting what we
do to the deployment and use of the technology in current and
future defence systems.
This book seeks to interpret connections between the machine brain, mind and vision in an alternative way and promote future research into the Interdisciplinary Evolution of Machine Brain (IEMB). It gathers novel research on IEMB, and offers readers a step-by-step introduction to the theory and algorithms involved, including data-driven approaches in machine learning, monitoring and understanding visual environments, using process-based perception to expand insights, mechanical manufacturing for remote sensing, reconciled connections between the machine brain, mind and vision, and the interdisciplinary evolution of machine intelligence. This book is intended for researchers, graduate students and engineers in the fields of robotics, Artificial Intelligence and brain science, as well as anyone who wishes to learn the core theory, principles, methods, algorithms, and applications of IEMB.
This book presents the current state of the problem of describing the musculoskeletal system of a person. Models of the destruction of the endoskeleton and the restoration of its functions using exoskeleton are presented. A description is given of new approaches to modeling based on the use of weightless rods of variable length with concentrated masses. The practical application to the tasks of numerical simulation of the movements of the musculoskeletal system of a person is described. Exoskeleton models with variable-length units based on absolutely hard sections and sections that change their telescopic type length have been developed. The book is intended for specialists in the field of theoretical mechanics, biomechanics, robotics and related fields. The book will be useful to teachers, as well as graduate students, undergraduates and senior students of higher educational institutions, whose research interests lie in the modeling of anthropomorphic biomechanical systems.
This book brings together work on Turkish natural language and speech processing over the last 25 years, covering numerous fundamental tasks ranging from morphological processing and language modeling, to full-fledged deep parsing and machine translation, as well as computational resources developed along the way to enable most of this work. Owing to its complex morphology and free constituent order, Turkish has proved to be a fascinating language for natural language and speech processing research and applications. After an overview of the aspects of Turkish that make it challenging for natural language and speech processing tasks, this book discusses in detail the main tasks and applications of Turkish natural language and speech processing. A compendium of the work on Turkish natural language and speech processing, it is a valuable reference for new researchers considering computational work on Turkish, as well as a one-stop resource for commercial and research institutions planning to develop applications for Turkish. It also serves as a blueprint for similar work on other Turkic languages such as Azeri, Turkmen and Uzbek.
The DARPA Robotics Challenge was a robotics competition that took place in Pomona, California USA in June 2015. The competition was the culmination of 33 months of demanding work by 23 teams and required humanoid robots to perform challenging locomotion and manipulation tasks in a mock disaster site. The challenge was conceived as a response to the Japanese Fukushima nuclear disaster of March 2011. The Fukushima disaster was seen as an ideal candidate for robotic intervention since the risk of exposure to radiation prevented human responders from accessing the site. This volume, edited by Matthew Spenko, Stephen Buerger, and Karl Iagnemma, includes commentary by the organizers, overall analysis of the results, and documentation of the technical efforts of 15 competing teams. The book provides an important record of the successes and failures involved in the DARPA Robotics Challenge and provides guidance for future needs to be addressed by policy makers, funding agencies, and the robotics research community. Many of the papers in this volume were initially published in a series of special issues of the Journal of Field Robotics. We have proudly collected versions of those papers in this STAR volume.
The proceedings brings together a selection of papers from the 7th International Workshop of Advanced Manufacturing and Automation (IWAMA 2017), held in Changshu Institute of Technology, Changshu, China on September 11-12, 2017. Most of the topics are focusing on novel techniques for manufacturing and automation in Industry 4.0. These contributions are vital for maintaining and improving economic development and quality of life. The proceeding will assist academic researchers and industrial engineers to implement the concepts and theories of Industry 4.0 in industrial practice, in order to effectively respond to the challenges posed by the 4th industrial revolution and smart factories.
This book applies the concepts and methods of psychoanalysis to the study of artificial intelligence (AI) and human-AI interaction. It develops a new, more fruitful approach for applying psychoanalysis to AI and machine behavior. It appeals to a broad range of scholars: philosophers working on psychoanalysis, technology, AI ethics, and cognitive sciences, psychoanalysts, psychologists, and computer scientists. The book is divided into four parts. The first part (Chapter 1) analyzes the concept of "machine behavior." The second part (Chapter 2) develops a reinterpretation of some fundamental Freudian and Lacanian concepts through Bruno Latour's actor-network theory. The third part (Chapters 3 and 4) focuses on the nature and structure of the algorithmic unconscious. The author claims that the unconscious roots of AI lie in a form of projective identification, i.e., an emotional and imaginative exchange between humans and machines. In the fourth part of the book (Chapter 5), the author advances the thesis that neuropsychoanalysis and the affective neurosciences can provide a new paradigm for research on artificial general intelligence. The Algorithmic Unconscious explores a completely new approach to AI, which can also be defined as a form of "therapy." Analyzing the projective identification processes that take place in groups of professional programmers and designers, as well as the "hidden" features of AI (errors, noise information, biases, etc.), represents an important tool to enable a healthy and positive relationship between humans and AI. Psychoanalysis is used as a critical space for reflection, innovation, and progress.
This book covers a variety of problems, and offers solutions to some, in: Statistical state and parameter estimation in nonlinear stochastic dynamical system in both the classical and quantum scenarios Propagation of electromagnetic waves in a plasma as described by the Boltzmann Kinetic Transport Equation Classical and Quantum General Relativity It will be of use to Engineering undergraduate students interested in analysing the motion of robots subject to random perturbation, and also to research scientists working in Quantum Filtering.
This edited volume includes thoroughly collected on sensing and control for autonomous vehicles. Guidance, navigation and motion control systems for autonomous vehicles are increasingly important in land-based, marine and aerial operations. Autonomous underwater vehicles may be used for pipeline inspection, light intervention work, underwater survey and collection of oceanographic/biological data. Autonomous unmanned aerial systems can be used in a large number of applications such as inspection, monitoring, data collection, surveillance, etc. At present, vehicles operate with limited autonomy and a minimum of intelligence. There is a growing interest for cooperative and coordinated multi-vehicle systems, real-time re-planning, robust autonomous navigation systems and robust autonomous control of vehicles. Unmanned vehicles with high levels of autonomy may be used for safe and efficient collection of environmental data, for assimilation of climate and environmental models and to complement global satellite systems. The target audience primarily comprises research experts in the field of control theory, but the book may also be beneficial for graduate students.
This book provides a thorough overview of cutting-edge research on electronics applications relevant to industry, the environment, and society at large. It covers a broad spectrum of application domains, from automotive to space and from health to security, while devoting special attention to the use of embedded devices and sensors for imaging, communication and control. The book is based on the 2016 ApplePies Conference, held in Rome, Italy in September 2016, which brought together researchers and stakeholders to consider the most significant current trends in the field of applied electronics and to debate visions for the future. Areas addressed by the conference included information communication technology; biotechnology and biomedical imaging; space; secure, clean and efficient energy; the environment; and smart, green and integrated transport. As electronics technology continues to develop apace, constantly meeting previously unthinkable targets, further attention needs to be directed toward the electronics applications and the development of systems that facilitate human activities. This book, written by industrial and academic professionals, represents a valuable contribution in this endeavor.
Address brain and cognitive intelligence based control Combine neuroscience with robotics control Combine biomechanics with robotics control Provide applications used in such as human-robot interaction
In addition to the contributions presented at the 2018 International Symposium on Experimental Robotics (ISER 2018), this book features summaries of the discussions that were held during the event in Buenos Aires, Argentina. These summaries, authored by leading researchers and session organizers, offer important insights on the issues that drove the symposium debates. Readers will find cutting-edge experimental research results from a range of robotics domains, such as medical robotics, unmanned aerial vehicles, mobile robot navigation, mapping and localization, field robotics, robot learning, robotic manipulation, human-robot interaction, and design and prototyping. In this unique collection of the latest experimental robotics work, the common thread is the experimental testing and validation of new ideas and methodologies. The International Symposium on Experimental Robotics is a series of bi-annual symposia sponsored by the International Foundation of Robotics Research, whose goal is to provide a dedicated forum for experimental robotics research. In recent years, robotics has broadened its scientific scope, deepened its methodologies and expanded its applications. However, the significance of experiments remains at the heart of the discipline. The ISER gatherings are an essential venue where scientists can meet and have in-depth discussions on robotics based on this central tenet.
In order to achieve human-like performance, this book covers the four steps of reasoning a robot must provide in the concept of intelligent physical compliance: to represent, plan, execute, and interpret compliant manipulation tasks. A classification of manipulation tasks is conducted to identify the central research questions of the addressed topic. It is investigated how symbolic task descriptions can be translated into meaningful robot commands.Among others, the developed concept is applied in an actual space robotics mission, in which an astronaut aboard the International Space Station (ISS) commands the humanoid robot Rollin' Justin to maintain a Martian solar panel farm in a mock-up environment
This book presents selected peer-reviewed papers from the International Conference on Mechanical and Energy Technologies, which was held on 7-8 November 2019 at Galgotias College of Engineering and Technology, Greater Noida, India. The book reports on the latest developments in the field of mechanical and energy technology in contributions prepared by experts from academia and industry. The broad range of topics covered includes aerodynamics and fluid mechanics, artificial intelligence, nonmaterial and nonmanufacturing technologies, rapid manufacturing technologies and prototyping, remanufacturing, renewable energies technologies, metrology and computer-aided inspection, etc. Accordingly, the book offers a valuable resource for researchers in various fields, especially mechanical and industrial engineering, and energy technologies.
This book addresses the central role played by development in cognition. The focus is on applying our knowledge of development in natural cognitive systems, specifically human infants, to the problem of creating artificial cognitive systems in the guise of humanoid robots. The approach is founded on the three-fold premise that (a) cognition is the process by which an autonomous self-governing agent acts effectively in the world in which it is embedded, (b) the dual purpose of cognition is to increase the agent's repertoire of effective actions and its power to anticipate the need for future actions and their outcomes, and (c) development plays an essential role in the realization of these cognitive capabilities. Our goal in this book is to identify the key design principles for cognitive development. We do this by bringing together insights from four areas: enactive cognitive science, developmental psychology, neurophysiology, and computational modelling. This results in roadmap comprising a set of forty-three guidelines for the design of a cognitive architecture and its deployment in a humanoid robot. The book includes a case study based on the iCub, an open-systems humanoid robot which has been designed specifically as a common platform for research on embodied cognitive systems .
Humanoid robotics have made remarkable progress since the dawn of robotics. So why don't we have humanoid robot assistants in day-to-day life yet? This book analyzes the keys to building a successful humanoid robot for field robotics, where collisions become an unavoidable part of the game. The author argues that the design goal should be real anthropomorphism, as opposed to mere human-like appearance. He deduces three major characteristics to aim for when designing a humanoid robot, particularly robot hands: _ Robustness against impacts _ Fast dynamics _ Human-like grasping and manipulation performance Instead of blindly copying human anatomy, this book opts for a holistic design me-tho-do-lo-gy. It analyzes human hands and existing robot hands to elucidate the important functionalities that are the building blocks toward these necessary characteristics.They are the keys to designing an anthropomorphic robot hand, as illustrated in the high performance anthropomorphic Awiwi Hand presented in this book. This is not only a handbook for robot hand designers. It gives a comprehensive survey and analysis of the state of the art in robot hands as well as the human anatomy. It is also aimed at researchers and roboticists interested in the underlying functionalities of hands, grasping and manipulation. The methodology of functional abstraction is not limited to robot hands, it can also help realize a new generation of humanoid robots to accommodate a broader spectrum of the needs of human society."
- Unlike other AI titles, this book takes a step further towards the real applicability and transferability of AI, through detailed examples in a very important region of Spain - Includes chapters on health and social welfare, transportation, digital economy, energy efficiency and sustainability, agro-industry and tourism - Great diversity of authors, expert in the varied sectors and problems addressed, belonging to powerful research groups from the University of Seville with proven experience in the transfer of knowledge to the productive sector and agents attached to the Andalucia TECH Campus
In recent years, drones have been integrated with the Internet of Things to offer a variety of exciting new applications. Here is a detailed exploration of adapting and implementing Internet of Drones technologies in real-world applications, emphasizing solutions to architectural challenges and providing a clear overview of standardization and regulation, implementation plans, and privacy concerns. The book discusses the architectures and protocols for drone communications, implementing and deploying of 5G-drone setups, security issues, deep learning techniques applied on real-time footage, and more. It also explores some of the varied applications, such as for monitoring and analysis of troposphere pollutants, providing services and communications in smart cities (such as for weather forecasting, communications, transport, safety and protection), for disaster relief management, for agricultural crop monitoring, and more.
This book is a collection of papers on the state of the art in experimental robotics. Experimental Robotics is at the core of validating robotics research for both its systems science and theoretical foundations. Because robotics experiments are carried out on physical, complex machines, of which its controllers are subject to uncertainty, devising meaningful experiments and collecting statistically significant results, pose important and unique challenges in robotics. Robotics experiments serve as a unifying theme for robotics system science and algorithmic foundations. These observations have led to the creation of the International Symposia on Experimental Robotics. The papers in this book were presented at the 2002 International Symposium on Experimental Robotics.
Indoor Navigation Strategies for Aerial Autonomous Systems presents the necessary and sufficient theoretical basis for those interested in working in unmanned aerial vehicles, providing three different approaches to mathematically represent the dynamics of an aerial vehicle. The book contains detailed information on fusion inertial measurements for orientation stabilization and its validation in flight tests, also proposing substantial theoretical and practical validation for improving the dropped or noised signals. In addition, the book contains different strategies to control and navigate aerial systems. The comprehensive information will be of interest to both researchers and practitioners working in automatic control, mechatronics, robotics, and UAVs, helping them improve research and motivating them to build a test-bed for future projects.
This book examines the implications of disruptive technologies of the Fourth Industrial Revolution (4IR) on military innovation and the use of force. It provides an in-depth understanding of how both large and small militaries are seeking to leverage 4IR emerging technologies and the effects such technologies may have on future conflicts. The 4th Industrial Revolution (4IR), the confluence of disruptive changes brought by emerging technologies such as artificial intelligence, robotics, nanotechnologies, and autonomous systems, has a profound impact on the direction and character of military innovation and use of force. The core themes in this edited volume reflect on the position of emerging technologies in the context of previous Revolutions in Military Affairs; compare how large resource-rich states (US, China, Russia) and small resource-limited states (Israel, Sweden, Norway) are adopting and integrating novel technologies and explore the difference between various innovation and adaptation models. The book also examines the operational implications of emerging technologies in potential flashpoints such as the South China Sea and the Baltic Sea. Written by a group of international scholars, this book uncovers the varying 4IR defence innovation trajectories, enablers, and constraints in pursuing military-technological advantages that will shape the character of future conflicts. The chapters in this book were originally published as a special issue of the Journal of Strategic Studies.
Covers principles of Ionic Polymer Metal Composites (IPMC), manufacturing processes, applications and future possibilities in a systematic manner Highlights IPMC practical applicability in biomedical engineering domain Explores single-walled carbon nanotubes (SWNT) based IPMC soft actuators Discusses IPMC applications in underwater areas Includes IPMC application in robotics focussing on special compliant mechanism
This book provides a review of the state-of-the-art of agricultural robotics in different aspects of PA, the goals, and the gaps. The book introduces the area of Agricultural Robotics for Precision Agriculture (PA) specifically the conditions and limitations for implementing robots in this field and presents the concepts, principles, required abilities, components, characteristics and performance measures, conditions, and rules for robots in PA. |
You may like...
|